/IILASER TURBO X T

Technical Reference Manual

(The following is applicable to U.S.A. FCC class B version only)

This equipment generates and uses radio frequency energy. If it is not installed and used properly, that is, in strict accordance with the manufacturer's instructions, it may cause interference to radio and television reception.

It has been tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J, Part 15, of FCC Rules. These rules are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the computer with respect to the receiver
- Move the computer away from the receiver
- Plug the computer into a different outlet so that computer and receiver are on different branch circuits
If necessary, you should consult the dealer or an experienced radio/television technician for additional suggestions. You may find the following booklet prepared by the Federal Communications Commission helpful:
"How to Identify and Resolve Radio-TV Interference Problems"
This booklet is available from the U.S. Government Printing Office, Washington, DC20402, Stock No. 004-000-00345-4.

Table of Contents

1. Overview 1-2
1.1 Assembly of the computer 1-2
1.2 System board diagram 1-3
1.3 Power supply 1-4
1.4 Keyboard 1-4
1.5 Disk drive 1-4
1.6 Front panel 1-5
2. System board 2-2
2.1 System board block diagram 2-2
2.2 Microprocessor 2-3
2.3 Coprocessor 2-4
2.4 RAM 2-4
2.5 ROM 2-7
2.6 Interrupt subsystem 2-8
2.7 DMA 2-9
2.8 Timer 2-10
2.9 CPU speed control port 2-11
2.10 Expanded memory 2-11
2.11 Speaker 2-14
2.12 Front panel connector 2-15
2.13 Memory map 2-16
2.14 I/O map 2-18
$2.15 \mathrm{I} / \mathrm{O}$ slots 2-19
2.15.1 I/O channel diagram 2-19
2.15.2 I/O channel signal description 2-20
2.15.3 I/O slot timing at high speed 2-24
3. Keyboard 3-2
3.1 Keyboard layout 3-2
3.2 Keyboard connector 3-3
3.2.1 Keyboard connector specification 3-3
3.2.2 Keyboard connector signal description 3-3
3.3 Scan codes 3-4
3.3.1 Scan codes description 3-4
3.3.2 Scan codes details 3-5
3.3.3 Keyboard timing 3-27
3.4 Enhanced keyboard interface circuit 3-28
3.5 Enhanced keyboard matrix 3-29
4. Power supply 4-2
4.1 Power supply specification 4-2
4.2 Output connector pin out 4-4
4.3 Power consumption 4-5
5. System BIOS 5-2
5.1 Interrupt calls overview 5-2
5.2 Interrupt calls summary 5-6
5.3 LASER Turbo XT BIOS error message 5-12
6. EMS driver 6-2
6.1 Programs inside the EMS driver program diskette 6-2
6.2 Preparing a EMS system diskette 6-3
6.3 Programming the expanded memory 6-6
6.3.1 Programming guidelines 6-6
6.3.2 Checking the presence of EMM 6-8
6.3.3 EMM functions 6-8
7. Servicing 7-2
7.1 Circuit description 7-2
7.1.1 Oscillator circuit 7-2
7.1.2 CPU \& Buffers 7-2
7.1.3 ROM 7-3
7.1.4 RAM 7-4
7.1.5 Speaker circuit 7-5
7.1.6 Keyboard lock and LED indicator 7-5
7.2 Service flow chart 7-6
Appendix A
Gate Array Al specification A-2
Appendix B
Gate Array A2 specification B-2
Appendix C
8088-1 instruction set C-2
Appendix D
Turbo XT schematics D-2
Appenidx E
Turbo XT part lists E-2

CHAPTER

OVERVIEW

1. Overview

1.1 Assembly of the computer

Fig. 1.1 Exploded view of the computer

1.2 System Board Diagram

Fig. 1.2 System board diagram

1.3 Power Supply

The system DC power supply is a switching regulator, it is designed to operate at 130 watts continuously. The supply provides 4 voltage levels, they are 15 A of +5 V DC. 4.2 A of $+12 \mathrm{~V} \mathrm{DC}, 300 \mathrm{~mA}$ of -5 V DC and 300 mA of -12 V DC. If DC over-load or over-voltage conditions exist, the supply will automatically be shuted down. The AC input is also fused.

1.4 Keyboard

The keyboard layout resembles an ordinary typewriter. There are two types of keyboards offered to the users. One has 84 keys and the other is the XT enhanced keyboard with $101 / 102$ keys. Most of the keys share the same functions. These two types of keyboards are detachable and interface to the main units via a 5 pin DIN type connector through a spiral cable.

1.5 Disk Drive

The computer system can accommodate two doublesided and double-density disk drives.

The disk drive capacity is as follow:

Unformatted	Formatted
Media 500 K Bytes	Media 360 K Bytes
Track 6520 Bytes	Track 4608 Bytes

These two disk drives communicate with the main board via a Disk Drive Controller card or a Multi-I/O Card.

The number of disk drives installed should be set by setting the DIP switch DIP-SWI properly according to the following diagram.

1-Drives

2-Drives

3-Drives

4-Drives

Fig. 1.3 DIP switch settings for disk drives

1.6 Front Panel

On the front panel there is a keyboard lock. When the lock is on, all characters typed on the keyboard will be ignored.

Fig 1.4 Keyboard Lock Indicator

There are also a power indicator and a high speed indicator. When the LED of the high speed indicator is lit, the CPU is running at high speed mode.

Fig 1.5 Front Panel

CHAPTER
 2

SYSTEM BOARD

2. SYSTEM BOARD

2.1 Block Diagram

Fig. 2.1 System board block diagram

2.2 Microprocessor

The CPU of Laser Turbo XT is the Intel ${ }^{(®)}$ 8088-1 (or 8088-2 in the 8 MHZ model) it is a high performance microprocessor implemented in N-channel, depletion load, silicon gate technology (HMOS), and packaged in a 40-pin DIP package.

The Intel ${ }^{\circledR} 8088-1$ have the following features:

- 8-bit data bus interface
- 16-bit internal architecture
- Direct addressing capability to 1 Mbyte of memory
- Direct software compatibility with 8086
- 14-word by 16 -bit register set with symmetrical operations
- 24 operand addressing modes
- Byte, word and block operations
- 8-bit and 16 -bit signed and unsigned arithmetic in binary or decimal, including multiply and divide.
- Clock ratc of 10 MHZ .

On the Turbo XT, the 8088-1 can be driven at two Clock speed - 4.77 MHz and 10 MHz . At 4.77 MHz , memory accesses take four Clock cycles (840ns). While I/O accesses take five clock cycles (l050ns). At 10 MHz , the internal RAM accesses take four cycles (400ns) while all other memory accesses take 5 cycles. (500ns) I/O accesses still take 5 cycles. However, the clock is slowed down to 4.77 MHz for all I / O accesses. The same is true for DMA cycles. This ensure the turbo XT is compatible with most expansion cards when running even at 10 MHz which is more than twice the normal speed.

2.3 Coprocessor

An 8087 numeric data coprocessor can be installed on the TURBO XT to provide instructions and data types needed for high performance numeric applications.

The 8087 is a numeric processor extension that performs arithmetic and logical instruction on many types of numeric data. It also executes many built-in transcendental functions. The 8087 is treated as an extension to the CPU, providing register, data types, control, and instruction capabilities at the hardware level. The programmers can treat the CPU and the 8087 as a single processor.

The 8087 is offered in three versions:

- the 8087 (5MHz)

$$
8087-2(8 \mathrm{MHz})
$$

$$
8087-1 \text { (10MHz) }
$$

The 8088-1 must be used if the computer is to be operated at 10 MHz .

2.4 RAM (Random - access memory)

The computer have 640 K of RAM on board located at the bottom left corner. At the bottom right corner, there are 4 rows of sockets for the expanded memory. The layout of RAM on PCB is shown on Fig 2.2.

Fig 2.2 Layout of RAM on PCB

Row 1 and Row 2 both make up of two 4464 and one 4164 , Row 3 and Row 4 are two row of 41256 , these four rows of RAM make up totally 640 K of memory on board. These portion of RAM that the DOS can recognize is known as conventional memory. For the amount of conventional memory installed on board the DIP switch SWl should be set properly according to the following diagram.

256K

Bank enabled

0

0,1
$0,1,2$

640K
576K

$0,1,2,3$

Row 5 to Row 8 are four row of socekts for expanded memory. They should be inserted with 41256 and start inserting from Row 5. When all sockets are inserted with 41256 , the total expanded memory will be lMbyte.

For the amount of expanded memory installed, the DIP switch SW2 should be set properly. You may imagine that there are two expanded memory cards installed on the mainboard. The first consists of Row 5 and Row 6. The other consists of Row 7 and Row 8. Each card has a set of I/O ports for control purposes. The addresses of these I/O ports must be unique for each card. A 8 pole DIP switch is used to set these addresses.

DIP switch setting I/O port address (in Hex)

208
218
258
268

2E8

Disable the on board expanded memory

For example, the following DIP-switch setting configures card 1 at address 208 H and card 2 at 2 B 8 H .

The access time of the DRAM chips has to be 150 ns or less for 8 MHz high speed speration. For the 10 MHz model 120 ns DRAM is required.

2.5 ROM (Read only memory)

There are two 28 -pin sockets for ROM, one of them is occupied by a 2764 which stored the BIOS (Basic Input Output system). The other empty socket is used to house a 32 K ROM, such as the BASIC ROM.

The contents of the BASIC ROM should be arranged as follows.

2.6 Interrupt Subsystem

There are eight prioritized levels of interrupt, six are available on the system expansion slots for use by expansion cards. Two levels are used on the system board. Level 0 is connected to channel 0 of the timer to provide a periodic interrupt for the time-of-day clock.

Level 1 is used by the keyboard interface. Whenever a scan code from the keyboard is received an interrupt will be initiated.

The non-maskable interrupt (NMI) of the 8088 is connected to the memory parity checking circuitry. It is also used by the 8087 coprocessor to report errors. Fig 2.3 is the listing of the system interrupt.

Number	Usage
NMI	Parity
	8087
0	Timer
1	Keyboard
2	EGA
3	RS232 COM2
4	RS232 COM1
5	Hard disk
6	Diskette
7	Printer

Fig 2.3 Hardware interrupt listing

The interrupt controller and NMI circuitry are integrated into the gate array Al.

2.7 DMA (Direct Memory Access)

The Turbo XT employ a 8237A-5 Direct Memory Access (DMA) controller to perform the DMA function.

The $8237 \mathrm{~A}-5$ contains 344 bits of internal memory in the form of registers. Fig $2-4$ is the listing of these registers.

Name	Size (bit)	No.
Base Address Registers Base Word Count Registers	16	4
Current Address	16	4
Registers	16	4
Current Word Count	16	4
Registers	16	1
Temporary Address	16	1
Register		
Temporary Word Count	8	1
Register	8	1
Status Register	8	1
Command Register	6	4
Temporary Register	4	1
Mode Registers	4	1
Mesk Register		

Fig 2.4 8237A-5 internal registers

The 8237 only provides 16 bits of address A0-A15. An additional DMA page register is used to provide the highest 4 bits of addresses A16-A19 so that the entire 1 M address space can be accessed. The DMA page register is located at gate array A2.

The following figure shows the addresses of the DMA page register.

I/O address	R/W	Register
81 H	W	Page register for DMA channel 2
82 H	W	Page register for DMA channel 3
83 H	W	Page register for DMA channel 1

Fig 2.5 DMA page register.

The DMA channel 0 is normally reserved for the function of dynamic RAM refreshing.

2.8 Timer

The Programmable Interval Timer is integrated in the gate array Al and have the register set shown below.

I/O address	R/W	Register
40 H	R/W	Counter 0
41 H	R/W	Counter 1
42 H	R/W	Counter 2
43 H	W	Counter Word

Fig 2.6 Programmable interval timer register set.

Counter 0 is used as a general purpose timer. Counter 1 is used to count and request refresh cycles. Counter 2 is used as a tone generation for the loudspeaker. All timer are clocked at 1.19 MHz .

2.9 CPU Speed Control Port

The CPU speed control port is a R / W register with address 1 F 0 H . The first seven bits of the register is not used. Bit 7 is used to set the speed mode of the computer, when its content is 0 , the CPU is running at standard speed $(4.77 \mathrm{MHz})$. When its content is 1 , the CPU is running at high speed mode.

2.10 Expanded Memory

The gate array A2 can supports three Expanded Memory Boards (Only two are used on the Turbo XT) with each one contains a maximum of 2 Mbyte RAM. 1 Mbit DRAM can be supported while 41256 can also be used. On the TURBO XT four Row of 41256 are used to provide a total of 1 Mbytes of Expanded Memory.

Each Expanded Memory Board is controlled via eight I/O ports. The addresses of these ports are determined by external DIP switches settings. ESWO-ESW2 **determine address of board 0 while ESW3-ESW5 for board 1 and ESW6-ESW8 for board 2. (ESW6 \& ESW8 are shorted to ground on the Turbo XT).

Fig 2.7 Summarizes the DIP switches settings and the corresponding Page Mapping Register and Control Register for the Expanded Memory Board.

| ESW2 | ESW1 | ESW0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ESW5 | ESW4 | ESW3 | | |
| ESW8 | ESW7 | ESW6 | Page Mapping Register | Control Register |
| 0 | 0 | 0 | | |
| 0 | 0 | 1 | $0208 \mathrm{H}, 4208 \mathrm{H}, 8208 \mathrm{H}, \mathrm{C} 208 \mathrm{H}$ | $0209 \mathrm{H}, 4209 \mathrm{H}, 8209 \mathrm{H}, \mathrm{C} 209 \mathrm{H}$ |
| 0 | 1 | 0 | $0218 \mathrm{H}, 4218 \mathrm{H}, 8218 \mathrm{H}, \mathrm{C} 218 \mathrm{H}$ | $0219 \mathrm{H}, 4219 \mathrm{H}, 8219 \mathrm{H}, \mathrm{C} 219 \mathrm{H}$ |
| 0 | 1 | 1 | $0258 \mathrm{H}, 4258 \mathrm{H}, 8258 \mathrm{H}, \mathrm{C} 258 \mathrm{H}$ | $0259 \mathrm{H}, 4259 \mathrm{H}, 8259 \mathrm{H}, \mathrm{C} 259 \mathrm{H}$ |
| 1 | 0 | 0 | $0268 \mathrm{H}, 4268 \mathrm{H}, 8268 \mathrm{H}, \mathrm{C} 268 \mathrm{H}$ | $0269 \mathrm{H}, 4269 \mathrm{H}, 8269 \mathrm{H}, \mathrm{C} 269 \mathrm{H}$ |
| 1 | 0 | 1 | $02 \mathrm{~A} 8 \mathrm{H}, 42 \mathrm{~A} 8 \mathrm{H}, 82 \mathrm{~A} 8 \mathrm{H}, \mathrm{C} 2 \mathrm{~A} 8 \mathrm{H}$ | $02 \mathrm{~A} 9 \mathrm{H}, 42 \mathrm{~A} 9 \mathrm{H}, 82 \mathrm{~A} 9 \mathrm{H}, \mathrm{C} 2 \mathrm{A9}$ |
| 1 | 1 | 0 | $02 \mathrm{~B} 8 \mathrm{H}, 42 \mathrm{~B} 8 \mathrm{H}, 82 \mathrm{~B} 8 \mathrm{H}, \mathrm{C} 2 \mathrm{~B} 8 \mathrm{H}$ | $02 \mathrm{~B} 9 \mathrm{H}, 42 \mathrm{~B} 9 \mathrm{H}, 82 \mathrm{~B} 9 \mathrm{H}, \mathrm{C} 2 \mathrm{~B} 9 \mathrm{H}$ |
| 1 | 1 | 1 | $02 \mathrm{E} 8 \mathrm{H}, 42 \mathrm{E} 8 \mathrm{H}, 82 \mathrm{E} 8 \mathrm{H}, \mathrm{C} 2 \mathrm{E} 8 \mathrm{H}$ | $02 \mathrm{E} 9 \mathrm{H}, 42 \mathrm{E} 9 \mathrm{H}, 82 \mathrm{E} 9 \mathrm{H}, \mathrm{C} 2 \mathrm{E} 9 \mathrm{H}$ |

Fig 2.7 The relation between DIP switches settings and the corresponding Page Mapping Register and Control Register for the Expanded Memory Board.

The expanded memory occupy 64 K of contiguous memory space. The starting address is determined by the Control Register. Fig 2.8 shows the relation between bit 7 of the control Registers and the starting address.

Bit 7 of $\mathbf{8 2} \mathbf{x ~ 9 H}$	Bit 7 of $\mathbf{4 2} \mathbf{x} \mathbf{9 H}$	Bit 7 of $\mathbf{0 2} \mathbf{x ~ 9 H}$	Starting address
0	0	0	C 4000 H
0	0	1	C 8000 H
0	1	0	CC 000 H
0	1	1	D 0000 H
1	0	0	D 4000 H
1	0	1	D 8000 H
1	1	0	$\mathrm{DCO00H}$
1	1	1	E 0000 H

$\mathrm{X}=0,1,5,6, \mathrm{~A}, \mathrm{~B}, \mathrm{E}$

Bit 7 of C2X9 must be set to 0 . If bit 7 is set to 1 , a subsequent read of Expanded Memory will initiate a parity error. This is for testing purpose only.

The Expanded Memory is accessed in 16 K page. There are four Page Mapping Registers used to enabling, disabling, and swapping the various pages in and out of the system memory space. Each board can support up to 128 pages, thus using 7 of these 8 bits in each Page Mapping Register. The eighth bit is a page enable/disable bit when set (1 or high), it allows the page to appear in the memory space. When clear (0 or low), the page does not appear in the memory space. This enabling/disabling is necessary to avoid read conflicts between different boards in the system. Fig 2.9 shows the relation between the Page Mapping Register and the corresponding 16 K memory window.

I/O address	R/W	16K window
02 X 8 H	R / W	Y0000-Y3FFFH
42 X 8 H	R / W	Y4000-Y7FFFH
82 X 8 H	R / W	Y8000-YBFFFH
C 2 X 8 H	R / W	YC000-YFFFFH

$X=0,1,5,6, A, B, E$
Y is a don't care
Fig 2.9 Relation between Page Mapping Register and the corresponding 16 K memory Window

For example, if the Expanded Memory starts from address C 4000 H , then the port 02 X 8 H controls the D000H-D3FFFH window, 42 X 8 H controls the $\mathrm{C} 4000 \mathrm{H}-$ C7FFFH window, 82 X 8 H controls the C8000-CBFFFH window and C 2 X 8 H controls the $\mathrm{CC} 000 \mathrm{H}-\mathrm{CFFFFH}$ window.

On the LASER TURBO XT, the expanded memory pages are partially decoded. For example, page number 80 H and 90 H will reference the same page. The details are as follow

RAM Location	Descriptions	
Row 5	Board 0	Page C0H-CFH Partially decoded through C0H-FFH Row 6
Row 7	Board 0	Page 80H-8FH Partially decoded through 80H-BFH Rage C0H-CFH Partially decoded through C0H-FFH Page 80-8FH Partially decoded
through 80-BFH		

2.11 Speaker

The sound system has a small speaker. The speaker can be driven from one or both of two sources:

- An by setting \& resetting BIT 1 of I/O port 61 H .
- By timer channel, this timer is clocked by a 1.19 MHz clock. The timer gate is also controlled by bit 0 of I / O port 61 H .

Bit 1, I/O Address Hex 0061

Bit 0, 1/O Address Hex 0061

Fig 2.10 Speaker connector.

2.12 Front panel connector

A five pin jumper J 12 is situated at the right bottom of the PCB, the pin 1 and pin 2 of the front panel connector are for keyboard lock, if these two pins is open, any data entered from the keyboard will not be recognized.

Fig 2.11 Front panel connector
2.13 Memory Map

Start Address		Function
Decimal	Hex	
0	00000	256-640K Read/Write Memory on System Board
16K	04000	
32K	08000	
48 K	0 C 000	
64K	10000	
80K	14000	
96K	18000	
112K	1 C 000	
128K	20000	
144K	24000	
160 K	28000	
176K	2 C 000	
192K	30000	
208K	34000	
224K	38000	
240K	3 C 000	
256K	40000	
272K	44000	
288K	48000	
304K	4C000	
320 K	50000	
336K	54000	
352K	58000	
368K	5C000	
384 K	60000	
400 K	64000	
416K	68000	
432K	6C000	

Start Address		Function
Decimal	Hex	
448K	70000	
464K	74000	
480K	78000	
496K	7 C 000	
512K	80000	
528K	84000	
544K	88000	
560K	8 C 000	
576K	90000	
592K	94000	
608K	98000	
624K	9C000	
640K	A0000	
656K	A4000	
672K	A8000	128K Reserved
688 K	AC000	
704K	B0000	Monochrome
720 K	B4000	
736K	B8000	Color/Graphics
752K	BC000	
768K	C 0000	EGA BIOS
784K	C4000	
800 K	C8000	Fixed Disk Control

Start Address		Function
Decimal	Hex	
816K	CC000	
832K	D0000	
848K	D4000	192K Read only
864K	D8000	Memory
880K	DC000	Expansion and
896K	E0000	Control
912K	E4000	
928K	E8000	
944K	EC000	
960K	F0000	
976K	F4000	64K Base System
992K	F8000	ROM
1008K	FC000	BIOS AND BASIC

2.14 I/O MAP

Hex Range	Usage
$000-00 \mathrm{~F}$	DMA Chip 8237A-5
$020-021$	Interrupt controller
$040-043$	Timer
$060-063$	PPI
$080-083$	DMA Page Registers
0 A 0	NMI Mask Register
$200-20 \mathrm{~F}$	Game Control
$210-217$	Expansion Unit
$2 \mathrm{~F} 8-2 \mathrm{FF}$	Asynchronous
	Communications (Secondary)
$300-31 \mathrm{~F}$	Prototype Card
$320-32 \mathrm{~F}$	Fixed Disk
$378-37 \mathrm{~F}$	Paralle1 Printer
$380-38 \mathrm{~F}$	SDLC Communications
$3 \mathrm{~B} 0-3 \mathrm{BF}$	Monochrome Display Printer
$3 D 0-3 \mathrm{DF}$	Color/Graphics
$3 \mathrm{~F} 0-3 \mathrm{~F} 7$	Diskette
$3 \mathrm{~F} 8-3 \mathrm{FF}$	Asynchronous
	Communications (Primary)

2.15 I/O Slots

2.15.1 I/O channel diagram

2.15.2 I/O channel signal description

The following is a description of the I/O channel signal. All lines are TTL-compatible.

Signal	I/O	Description
OSC	O	Oscillator : 14.31818 MHz clock. It has a 50% duty cycle.
CLOCK	O	System Clock : It is the CPU clock, it has a period of 210 ns (4.77 MHz) in normal mode and a period of $100 \mathrm{~ns}(10 \mathrm{MHz})$ in high speed mode. The clock has a 33% duty cycle.
RESET DRV	O	This line is used to reset system logic on power up or when the line voltage is too low. This signal is synchronized to the falling edge of clock and is active high.
A0-A19	O	Address Bits 0 to 19: These lines are used to address memory and I/O devices within the system. The 20 address lines allow access of up to 1 megabyte of memory. These lines are generated by either the processor or DMA controller.
D0-D7	I/O	Data Bits 0 to 7: These lines provide data bus bits 0 to 7 for the processor, memory, and I/O devices.

Signal	I/O	Description
ALE	O	Address Latch Enable: This line is driven by the bus controller and is used to latch valid addresses from the processor. Processor addresses are latched with the falling edge of ALE.
$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & \text { CH CK } \end{aligned}$	I	I/O Channel Check: When this signal is active low, a parity error is indicated and the NMI signal to the processor will be activated.
I/O CH RDY	I	I/O Channel Ready: This line, normally high (ready), is pulled low (not ready) by a memory or I/O device to insert wait states. It allows slower devices to attach to the I/O channel. This line should be asserted immediately when a valid address and the read write command are detected. This line cannot be held longer than 10 clock cycles.

Signal	I/O	Description
IRQ2IRQ7	I	Interrupt Request 2 to 7: These lines are used to request services from the processor. IRQ 2 has the highest priority and IRQ7 has the lowest. An interrupt request is generated by asserting an IRQ line (low to high) and holding it high until it is acknowledged by the processor (interrupt service routine).
IOR	O	-I/O Read Command: This command is used to read data from an I/O device. It may be driven by the processor or the DMA controller. This signal is active low.
IOW	O	-I/O Write Command: This command is used to strobe data into an I/O device. It may be driven by the processor or the DMA controller. This signal is active low.
MEMR	O	Memory Read Command: This command line is used to read a memory. It may be driven by the processor or the DMA controller. This signal is active low.
MEMW	O	Memory Write Command: This command line is used to strobe data into a memory. It may be driven by the processor or the DMA controller, this signal is active low.

Signal	I/O	Description
$\begin{aligned} & \text { DRQ1- } \\ & \text { DRQ3 } \end{aligned}$	I	DMA Request 1 to 3: These
		lines are used to request DMA
		service, DRQ 3 has the lowest
		highest. A request is generated
		by asserting a DRQ line to
		high. A DRQ line must be held high until the
		corresponding DACK line goes active.
$\begin{aligned} & \text { DACK } 0- \\ & \text { DACK } 3 \end{aligned}$	O	-DMA Acknowledge 0 to 3:
		These lines are used to
		acknowledge DMA requests
		(DRQ1-DRQ3). They are
		active low. Dack0 is used to refresh dynamic RAM.
AEN	O	Address Enable: When this
		signal is high, the address bus,
		the DMA controller.
T/C	0	Terminal Count: When the
		terminal count for any DMA
		channel is reached, a pulse will
		be output on this line. This signal is active high.

2.15.3 I/O SLOT TIMING at high speed $\left(\mathrm{Vcc}=5 \mathrm{~V}+/-5 \%, \mathrm{Ta}=0 \mathrm{To} 70^{\circ} \mathrm{C}\right)$

$\begin{array}{llll}$\cline { 3 - 4 } \& \& \(\left.$$
\begin{array}{l}\text { Min } \\
\text { (ns) }\end{array}
$$ \& $$
\begin{array}{l}\text { Type } \\
\text { (ns) }\end{array}
$$\end{array} \begin{array}{l}Max

(ns)\end{array}\right]\)| 1. | ALE active delay
 from CLK | 17 | 84 |
| :--- | :--- | :--- | :--- |
| 2.ALE inactive delay
 from CLK | 2 | 15 | |

3. A0-A19 delay from
CLK

4.	MEMW active delay	4	12	25
5.	MEMW inactive delay	2	8	17
6.	D0-D7 (write) delay			71
7.	D0-D7 (write) delay			58
8.	MEMR active delay	4	12	25
9.	MEMR inactive delay	2	8	17
10.	IOW active delay	4	12	25
11.	IOW inactive delay	2	8	17
12.	IOR active delay	4	12	25
13.	IOR inactive delay	2	8	17

MEMR AND MEMW TIMING AT HIGH SPEED MODE

IOR AND IOW TIMING AT HIGH SPEED MODE

CHAPTER 3

KEYBOARD

3. KEYBOARD

3.1 Keyboard Layout

There are two types of keyboards offered to the users. One has 84 keys while the other is the XT enhanced keyboard with 101/102 keys.

To describe the keyboard clearly, it has been divided into three section according to their different functions.

1 : Typewriter key and control keys
2 : Numeric Keypad and edit keys
3 : Function keys.

1: Typewriter key and control key

Fig 3.1 Layout of 84 kcys keyboard.

3 : Function keys

1: Typewriter key and control key

2 : Numeric keypad

Fig 3.2 Layout of 102 keys keyboard.

3.2 Keyboard Connector

3.2.1 keyboard Connector Specification

The keyboard connector is a 5-pin DIN connector, its pin assignment is illustrated in Fig. 3.3

Fig 3.3 Pin assignment of the 5-pin DIN connector

The keyboard connector specification is as follow:

Pin	TTL Signal
1	+Keyboard Clock
2	+Keyboard data
3	-Keyboard Reset
4	(Not Used)
5	Ground
+5 Volts	

3.2.2 Keyboard Connector Signal Description

There are totally five signal lines connecting the keyboard controller to the LASER Turbo XT mainboard.

They are : (1) KBDATA - Keyboard data
(2) KBDCLK - Keyboard clock
(3) KRES - Keyboard reset
(4) GND - Signal ground
(5) Vcc - +5V DC Supply.

KRES line is not used (N.C.) in the current circuit KBDATA line is a bi-directional line driven by opencollector devices. It is normally low when no signal is transferring.

KBDCLK line is a bi-directional line driven by opencollector devices. It is normally high when no signal is transferring.

3.3 SCAN CODES

3.3.1 Scan Codes Description

On the Laser Turbo XT, as the other IBM PC/XT compatible machines, the keyboard controller is responsible for generating "Scan code" instead of ASCII code. These Scan codes are arbitrary assigned and their meaning are interpreted by the system BIOS or the application programs running. This allows for easy modification to support foreign language keyboards.

Scan codes are classified as "Make" and "Break" codes. Make/Break codes of the same key only differs in the most significant bit (Bit 7). Make code has $\mathrm{MSB}=0$, while Break code has MSB=1.

Not all possible scan code are recognized by the system BIOS. Some invalid scan codes are ignored by the system BIOS, and some forbidden scan code produces "beep" sound when the system BIOS detects it.
"Make" codes are generated when a key is depressed, i.e, changes from OFF state to ON state. If the key is depressed for a certain length of time (Say $1 / 2$ second), the same "Make" code as above will be generated and transmitted to the main unit at a rate of approximately 10 times each second. This "autorepeating" feature is also known as "typmatic".

All the keys on the conventional IBM ${ }^{\circledR} \mathrm{PC} / \mathrm{XT}$ keyboard are typmatic, however, some keys on the Enhanced Keyboard are not typmatic, i.e, make codes are generated when the key is pressed for the first time, but holding the key down will not generate any further make codes (e.g. Pause key in Enhanced Keyboard).
"Break" codes are generated when a key is released, i.e, changes from ON state to the OFF state.

The delay time before typmatic occurs is approximately $1 / 2$ second. Typmatic rate is approximately 10 codes (code sequence in multi-code conditions) per second. That is, after you have pressed the key and hold down for $1 / 2$ seconds, there will be 10 characters per second generated on the screen.

3.3.2 Scan Codes Details

Terminology used:

1. CAPS LOCK ON $=$	The CAPS LOCK LED IS
	ON.
	ie, the main unit
	interpretes capital letter.

2. CAPS LOCK OFF $=\begin{aligned} & \text { The CAPS LOCK LED IS } \\ & \text { OFF. }\end{aligned}$ ie, the main unit interpretes small case letter.
$\begin{aligned} & \text { 3. } \mathrm{Ctrl} \text { ON }=\begin{array}{l}\text { The Ctrl key (either left or } \\ \text { right) is already depressed }\end{array} \\ & \text { 4nd not yet released. }\end{aligned}$

	SHIFT ON		The Shift key (either, left or right) is already depressed and not yet released.
6.	SHIFT OFF	$=$	The shift keys are not depressed.
7.	RIGHT SHIFT ON	$=$	The right shift key is depressed and not yet released.
8.	LEFT SHIFT ON	$=$	The left shift key is depressed and not yet released.
9.	ALT ON	$=$	The Alt key (left or right) is depressed and not yet released.
10.	ALT ON	=	The ALT keys are not pressed.
11.	SCROLL LOCK ON	$=$	The SCROLL LOCK LED is lighted. (if no such LED, internal status is stored.
12.	SCROLL LOCK OFF	=	The SCROLL LOCK LED is off. (if no such LED, internal status is stored)
13.	NUM LOCK ON	$=$	The Num Lock LED is lighted. Main unit interpretes numeric keypad as numbers
14.	NUM LOCK OFF	=	The Num Lock LED is off. Main unit interpretes numeric keypad as cursor.

Key description	Pressed	Pressed and hold for certain time (1/2 sec)	Released
F 1	3B	repeatly 3 B	BB
F2	3 C	repeatly 3 C	BC
F3	3D	repeatly 3 D	BD
F4	3E	repeatly 3 E	BE
F5	3F	repeatly 3 F	BF
F6	40	repeatly 40	C0
F7	41	repeatly 41	Cl
F8	42	repeatly 42	C2
F9	43	repeatly 43	C3
F10	44	repeatly 44	C4
F11	57	repeatly 57	D7
F12	58	repeatly 58	D8
ESC	01	repeatly 01	81

Key description	Pressed	Pressed and hold for certain time $(1 / 2$ sec)	Released
Caps Lock	3A and toggles Caps Lock LED	repeatly 3A and Caps Lock LED unchange	BA and LED Caps Lock unchange
Num Lock	45 and toggles Num Lock LED	repeatly 45 and Num Lock LED unchanged	C5 and Num Lock LED unchange
Ctrl (left)	ID	repeatly lD	9D
Ctrl (right)	E0, 1D	repeatly E0, 1D	E0, 9D
Alt (left)	38	repeatly 38	B8
Alt (right)	E0, 38	repeatly E0, 38	E0, B8

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
(Numeric KeyPad)	If SHIFT OFF, then send 37 If either left/right SHIFT ON, send 37. If Both SHIFT ON then send no code.	If SHIFT OFF, repeatly send 37. If either left/right SHIFT ON, repeatly send 37 If Both SHIFT ON then send no code.	If SHIFT OFF, send B7. If either left/right SHIFT ON, send B7 If Both SHIFT ON then send no code.
$/$ (Numeric Key Pad)	If SHIFT OFF, then send E0,35. If Left SHIFT ON then send E0,AA, E0,35. If Right SHIFT ON, then send $E 0$, B6, E0, 35. If Both SHIFT ON, then send no code.	If SHIFT OFF, repently send E0, 35 . If either left/right SHIFT ON, repeatly send E0, 35. If Both SHIFT ON then send no code	If SHIFT OFF, send E0, B5 If left SHIFT ON, then send E0, B5, E0, 2 A If Right SHIFT ON,then send E0, B5, E0, 36. If Both SHIFT ON, then send no code

Key description	Pressed	Pressed and hold for certain time (1/2 sec)	Released
Print Screen (sys Rcq)	If ALT ON, then send 54. If ALT OFF, If SHIFT OFF, send EO, 2A, E0, 37. If SHIFT ON, scnd E0, 37.	If ALT ON, repeatly send 54. If ALT OFF, repeat send E0, 37,	If ALT ON send D4, If ALT OFF, Scnd E0, B7 E0, AA
$\begin{aligned} & \text { Scroll } \\ & \text { Lock } \end{aligned}$	If Ctrl OFF, then send 46 , and toggles SCROLL LOCK LED If Ctrl ON, then send 46, and does not toggle SCROLL LOCK LED.	Repeatly send 46	Scnd C6. SCROLL LOCK LED not affected
Pause (Break)	If Ctrl ON , then send E0, 46, E0, C6. If Ctrl OFF, then send E1, 1D, 45, E1, 9D, C5.	No further code send.	No Code send

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
\rightarrow	case (i) NUM LOCK OFF and SHIFT OFF, send E0, 4D	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E0,4D.	case (i) NUM LOCK OFF and SHIFT OFF, send E0, CD.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, AA, E0, 4D If Right SHIFT ON, send E0, B6, E0, 4D If Both SHIFT ON, send E0, B6, E0, AA, E0, 4D.	case (ii) NUM LOCK OFF, SHIFT ON, repeatly send E0, 4D	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, CD, E0, 2A. If Right SHIFT ON, send E0, CD, E0, 36 . If Both SHIFT ON, send E0, CD, E0, 36, E0, 2A.
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 4D	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send E0, 4D.	case (iii) NUM LOCK ON, SHIFT OFF, send E0, CD, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send E0, 4D.	case (iv) NUM LOCK ON, SHIFT ON, repeatly send E0,4D.	case (iv) NUM LOCK ON, SHIFT ON, send E0, CD.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
$\begin{aligned} & \text { SHIFT } \\ & (\mathrm{left}) \end{aligned}$	2 A	$\begin{aligned} & \text { repeatly } \\ & 2 \mathrm{~A} \end{aligned}$	A A
SHIFT (right)	36	$\begin{aligned} & \text { repeatly } \\ & 36 \end{aligned}$	B6
ENTER (Big)	1 C	$\begin{aligned} & \text { repcatly } \\ & \text { IC } \end{aligned}$	9 C
Enter (Numeric KeyPad)	E0, 1C	$\begin{aligned} & \text { repeatly } \\ & \text { E0, 1C } \end{aligned}$	E0, 9C
+ (Numeric KeyPad)	4E	$\begin{aligned} & \text { repcatly } \\ & 4 \mathrm{E} \end{aligned}$	CE
- (Numeric KeyPad)	4A	$\begin{aligned} & \text { repeatly } \\ & 4 \mathrm{~A} \end{aligned}$	CA

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
Insert	case (i) NUM LOCK OFF and SHIFT OFF, send E0, 52	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E0,52.	case (i) NUM LOCK OFF and SHIFT OFF, send E0,D2.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, AA, E0, 52 If Right SHIFT ON, send E0, B6, E0, B2 If Both SHIFT ON, send E0, B6, E0, AA, E0, 52.	case (ii) NUM LOCK OFF, SHIFT ON, repeatly send E0,52	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, D2, E0, 2A If Right SHIFT ON, send E0, D2, E0, 36. If Both SHIFT ON, send E0, D2, E0, 36, E0, 2A.
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 52 .	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send E0, 52.	case (iii) NUM LOCK ON, SHYFT OFF, send E0, D2, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send E0, 52	case (iv) NUM LOCK ON, SHIFT ON, repeatly send E0, 52.	case (iv) NUM LOCK ON, SHIFT ON, send E0, D2.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
Delete	case (i) NUM LOCK OFF and SHIFT OFF, send E0, 53	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send $\mathbf{E} 0,53$	case (i) NUM LOCK OFF and SHIFT OFF, send E0, D3.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, AA, E0, 53 If Right SHIFT ON, send E0, B6, E0, 53 . If Both SHIFT ON, send E0, B6, E0, AA, E0, 53	case (ii) NUM LOCK OFF' SHIFT ON, repeatly send E0, 53	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, D3, E0, 2A. If Right SHIFT ON, send E0, D3, E0, 36. If Both SHIFT ON, send E0, D3, E0, 36, E0, 2A.
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 53	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send $\mathrm{E} 0,53$.	case (iii) NUM LOCK ON, SHIFT OFF, send E0, D3, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send $\text { E0, } 53 .$	case (iv) NUM LOCK ON, SHIFT ON, repeatly send E0,53.	case (iv) NUM LOCK ON, SHIFT ON, send E0, D3.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
Home	case (i) NUM LOCK OFF and SHIFT OFF, send EO, 47	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E0, 47.	case (i) NUM LOCK OFF and SHIFT OFF, send E0, C7.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, AA, E0, 47 If Right SHIFT ON, send E0, B6, E0, 47 If Both SHIFT ON, send E0, B6, E0, AA, E0, A7	case (ii) NUM LOCK OFF, SHIFT ON, repeatly send E0, 47	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, C7, E0, 2A. If Right SHIFT ON, send E0, C7, E0, 36. If Both SHIFT ON, send E0, C7, E0, 36, E0,2A.
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 47.	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send E0, 47.	case (iii) NUM LOCK ON, SHIFT OFF, send E0, C7, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send EO, 47.	case (iv) NUM LOCK ON, SHIFT ON, repeatly send E0, 47.	case (iv) NUM LOCK ON, SHIFT ON, send E0, C7.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
\downarrow	case (i) NUM LOCK OFF and SHIFT OFF, send E0, 50.	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E0,50.	case (i) NUM LOCK OFF and SHIFT OFF, send EO, DO.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, AA, E0, 50. If Right SHIFT ON, send E0,B6, E0,50 If Both SHIFT ON, send $\mathrm{E} 0, \mathrm{~B} 6$, E0,AA,E0,50.	case (ii) NUM LOCK OFF, SHIFT ON, repeatly send $\mathrm{E} 0,50$	case (ii) NUM LOCK OFF SHIFT ON, If Left SHIFT ON, send E0, D0, E0, 2A. If Right SHIFT ON, send E0, D0, E0,36. If Both SHIFT ON, send E0, D0, E0, 36, E0, 2 A .
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 50.	case (iii) NUM LOCK ON SHIFT OFF, repeatly send E0, 50.	case (iii) NUM LOCK ON SHIFT OFF, send E0, D0, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send E0, 50.	case (iv) NUM LOCK ON, SHIFT ON, repeatly send E0,50.	case (iv) NUM LOCK ON, SHIFT ON, send E0,D0.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
\longleftarrow	case(i) NUM LOCK OFF and SHIFT OFF, send $E 0,4 B$.	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E0, 4B.	case (i) NUM LOCK OFF and SHIFT OFF, send E0, CB.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON send E0, AA, E0, 4B. If Right SHIFT ON, send E0, B6, E0, 4B If Both SHIFT ON, send E0, B6, E0, AA, E0, 4B.	case (ii) NUM LOCK OFF, SHIFT ON, repeatly send E0, 4B	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, CB, E0, 2A. If Right SHIFT ON, send $E 0, C B$, E0, 36 . If Both SHIFT ON, send $\mathrm{E} 0, \mathrm{CB}$, E0, 36, E0, 2A.
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 4B.	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send E0, 4B.	case (iii) NUM LOCK ON, SHIFT OFF, send E0, CB, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send E0, 4B.	case (iv) NUM LOCK ON, SHIFT ON, repeatly send E0,4B.	case (iv) NUM LOCK ON, SHIFT ON, send E0,CB.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
\uparrow	case (i) NUM LOCK OFF and SHIFT OFF, send E0,48.	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E0, 48.	case (i) NUM LOCK OFF and SHIFT OFF, send EO, C8.
	case (ii) NUM LOCK OFF SHIFT ON,' If Left SHIFT ON, send E0,AA, E0,48 If Right SHIFT ON, Send E0, B6, 0,48 . If Both SHIFT ON, send E0, B6, E0, AA, E0, 48.	case (ii) NUM LOCK OFF, SHIFT ON,' repeatly send E0, 48.	case (ii) NUM LOCK OFF SHIFT ON,' If Left SHIFT ON, send E0,C8, E0,2A. If Right SHIFT ON, Scnd E0, C8, E0, 36 . If Both SHIFT ON, send $\mathrm{E} 0, \mathrm{C} 8$, E0, 36, E0, 2A.
	case (iii) NUM LOCK ON, SHIFT OFF, Send E0, 2A, E0, 48	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send E0, 48	case (iii) NUM LOCK ON, SHIFT OFF, Send E0, C8, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send E0, 48.	case (iv) NUM LOCK ON, SHIFT ON, repeatly send $\text { E0, } 48$	case (iv) NUM LOCK ON, SHIFT ON, send E0, C8

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
Page Down	case (i) NUM LOCK OFF and SHIFT OFF, send E0, 51	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E0,51.	case (i) NUM LOCK OFF and SHIFT OFF, send E0,DI.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, AA, E0, 51 If Right SHIFT ON, send E0, B6, E0,51 If Both SHIFT ON, send E0, B6, E0, AA, E0, 51	case (ii) NUM LOCK OFF, SHIFT ON, repeatly send E0,51	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send EO, D1, E0, 2A. If Right SHIFT ON, send EO, D1, E0, 36. If Both SHIFT ON, send E0,D1,E0,36 E0,2A.
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 51.	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send E0,51.	case (iii) NUM LOCK ON, SHIFT OFF, send E0, D1, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send E0, 51.	case (iv) NUM LOCK ON, SHIFT ON, repeatly send EO, 51.	case (iv) NUM LOCK ON, SHIFT ON, send E0, DI.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
$\begin{aligned} & \text { Page } \\ & \text { Up } \end{aligned}$	case (i) NUM LOCK OFF and SHIFT OFF, send E0, 49	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E 0,49 .	case (i) NUM LOCK OFF and SHIFT OFF, send E0,C9.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, AA, E0, 49. If Right SHIFT ON, send E0, B6, E0, 49 If Both SHIFT ON, send E0, B6, E0, AA, E0, 49	case (ii) NUM LOCK OFF, SHIFT ON, repeatly send E0,49	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send EO, C9, E0, 2A. If Right SHIFT ON, send E0, C9, E0, 36. If Both SHIFT ON, send E0, C9, E0, 36 E0,2A.
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 49.	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send E0,49.	case (iii) NUM LOCK ON, SHIFT OFF, send E0, C9, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send E0, 49.	case (iv) NUM LOCK ON, SHIFT ON, repeatly send E0, 49.	case (iv) NUM LOCK ON, SHIFT ON, send E0, C9.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
End	case (i) NUM LOCK OFF and SHIFT OFF, send E0, 4F	case (i) NUM LOCK OFF and SHIFT OFF, repeatly send E0,4F.	case (i) NUM LOCK OFF and SHIFT OFF, send $E 0, C F$.
	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, AA, E0, 4F If Right SHIFT ON, send E0, B6, E0, 4F If Both SHIFT ON, send E0, B6, E0, AA, E0, 4F.	case (ii) NUM LOCK OFF, SHIFT ON, repeatly send E0,4F	case (ii) NUM LOCK OFF, SHIFT ON, If Left SHIFT ON, send E0, CF, E0, 2A. If Right SHIFT ON, send EO, CF, E0, 36. If Both SHIFT ON send $\mathrm{E} 0, \mathrm{CF}, \mathrm{E} 0,36$ E0,2A.
	case (iii) NUM LOCK ON, SHIFT OFF, send E0, 2A, E0, 4 F .	case (iii) NUM LOCK ON, SHIFT OFF, repeatly send $\mathrm{E} 0,4 \mathrm{~F}$.	case (iii) NUM LOCK ON, SHIFT OFF, send $\mathrm{E} 0, \mathrm{CF}$, E0, AA.
	case (iv) NUM LOCK ON, SHIFT ON, send EO, 4 F .	case (iv) NUM LOCK ON, SHIFT ON, repeatly send $\mathrm{E} 0,4 \mathrm{~F}$.	case (iv) NUM LOCK ON, SHIFT ON, send E0, CF.

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
\sim	29	repeatly 29	A9
! 1	02	repeatly 02	82
@	03	repeatly 03	83
$\begin{aligned} & \# \\ & 3 \end{aligned}$	04	repeatly 04	84
$\$$ 4	05	repeatly 05	85
$\begin{aligned} & \% \\ & 5 \end{aligned}$	06	repeatly 06	86
6	07	repeatly 07	87
$\begin{aligned} & \& \\ & 7 \end{aligned}$	08	repeatly 08	88
8	09	repeatly 09	89
$\begin{aligned} & 1 \\ & 9 \end{aligned}$	0 A	repeatly 0A	8A
$)$	0B	repeatly 0B	8B
+ $=$	0D	repeatly 0D	8D
1	2B	repeatly $2 B$	AB

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
\longleftarrow	OE	repeatly 0E	8E
$\mathrm{Tab} \stackrel{ }{\leftrightarrows}$	OF	repeatly 0 F	8F
Q	10	repeatly 10	90
W	11	repeatly 11	91
E	12	repeatly 12	92
R	13	repeatly 13	93
T	14	repeatly 14	94
Y	15	repeatly 15	95
U	16	repeatly 16	96
I	17	repeatly 17	97
O	18	repeatly 18	98
P	19	repeatly 19	99
[1 A	repeatly 1 A	9 A

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
\}	1B	repeatly 1 B	9 B
A	1 E	repeatly 1 E	9E
S	IF	repeatly $1 F$	9F
D	20	repeatly 20	A0
F	21	repeatly 21	A 1
G	22	repeatly 22	A2
H	23	repeatly 23	A3
J	24	repeatly 24	A4
K	25	repeatly 25	A5
L	26	repeatly 26	A6
;	27	repeatly 27	A7
"	28	repeatly 28	A8

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathrm{sec}$)	Released
Z	2 C	repeatly 2 C	AC
X	2D	repeatly 2 D	AD
C	2 E	repeatly 2 E	AE
V	2F	repeatly 2 F	AF
B	30	repeatly 30	B0
N	31	repeatly 31	B1
M	32	repeatly 32	B2
,	33	repeatly 33	B3
>	34	repeatly 34	B4
$?$	35	repeatly 35	B5
Space Bar	39	repeatly 39	B9
$\begin{aligned} & 0 \\ & \text { Ins } \end{aligned}$	52	repeatly 52	D2
Del	53	repeatly 53	D3

Key description	Pressed	Pressed and hold for certain time ($1 / 2 \mathbf{~ s e c}$)	Released
$\begin{aligned} & 1 \\ & \text { End } \end{aligned}$	4F	repeatly 4 F	CF
21	50	repeatly 50	D0
$\begin{aligned} & 3 \\ & \mathrm{Pg} \mathrm{Dn} \end{aligned}$	51	repeatly 51	D 1
4 -	4B	repeatly 4B	CB
5	4 C	repeatly 4 C	CC
$6 \rightarrow$	4D	repeatly 4D	CD
7 Home	47	repeatly 47	C7
81	48	repeatly 48	C8
$\begin{aligned} & 9 \\ & \mathrm{Pg} \cup p \end{aligned}$	49	repeatly 49	C9

The typical timing for a single scan code and for a muticode are shown in Fig 3.4 and Fig 3.5 respectively.

Fig. 3.4 Typical timing for a single scan code

Fig. 3.5 Typical timing for multicode generated consecutively

3.4 Enhanced keyboard interface circuit

3.5 Enhanced keyboard matrix

CHAPTER

4

POWER SUPPLY

4. POWER SUPPLY

4.1 Power Supply Specification

Item	Conditions*		Min	Type	Max	Unit
Input Voltage	110 V Switched		90	110	132	VAC
	220V Switched		180	220	264	VAC
Input Frcquency			47		63	Hz
Loading Rangc	$\begin{aligned} & \hline 5 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & -5 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & \hline \end{aligned}$		3		15	A
			1.5		4.2	A
			0.0		0.3	A
			0.0		0.3	A
Total Regulation	Overall loading and input ranges	5 V 12 V -5 V, $-12 \mathrm{~V}$			$\pm 5 \%$	
					+10\%-5\%	
					$\pm 15 \%$	
					$\pm 15 \%$	
Noise and Ripple	$\begin{aligned} & 5 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & -5 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & \hline \end{aligned}$				$\begin{aligned} & 100 \\ & 200 \\ & 100 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & M \vee p-p \\ & \hline \end{aligned}$
Efficicnty			70\%			
Transient A. Overshoot	1 KHz squarc test wavefrom, switching from min. to max. other rail kept at max. loading	5 V			10\%	
		12 V			10\%	
		-5V			10\%	
		$-12 \mathrm{~V}$			10\%	
		5 V			10	us
Transicnt Response B. Scttling Time		12 V			10	us
		$-5 \mathrm{~V}$			10	us
					10	us

Item	Conditions*		Min	Type	Max	Unit
Overvoltage Protection Threshold		5 V			6.5	V
S/C input Power	Any rail shorted to GND				10	W
Inrush current					60	A
Power good Signal			3.0			V
					0.4	V
					4	MA
					-1.0	MA
			100			MSec
					5	usce
Hi-Pot Potential	Between Pri-Sce for 1 min . Pri-E		$\begin{aligned} & 2500 \\ & 2500 \end{aligned}$			$\begin{aligned} & \text { VDC } \\ & \text { VDC } \end{aligned}$
EMI	Mects FCC class B					
Safcty	UL listed E104979					
Mcchanical Dimension	Compatible with standard PC XT Switching Power Supply					

[^0]
4.2 Output Connector Pin Out

The power supply connectors and pin assignments is shown in Fig 4.1

Fig 4.1 Power Supply and connectors

The color of the wire of different pin out is as follow:

Pin Out	Color
+5	red
+12	yellow
-5	white
-12	blue
GND	black
Power good	orange

4.3 Power Consumption

The Power consumption estimation of the LASER Turbo XT is summarized in the following table.

Supply voltage (V)	$\mathbf{5}$	$\mathbf{1 2}$
Supply current (A) Current taken by (A) System board	15	4.2
Current taken by 1st (A) $5 " 1 / 4$. drive	2	-
Current taken by 2st (A) $5 " 1 / 4$. drive	0.6	0.9
Current taken by one (A) 20 MB Hard Disk	0.6	0.9
Current available for slots (8 slots) (A)	11.1	0.6
Average current available for each slot (A)	1.38	0.075

CHAPTER 5

SYSTEM BIOS

5. SYSTEM BIOS

5.1 Interrupt Calls Overview

The BIOS routines are called through the 8088 software interrupt. The parameters are passed using the 8088 registers. The following section provides an overview on the various routines.

1. Interrupt Hex 0 - Divide by Zero
2. Interrupt Hex 1-Single Step
3. Interrupt Hex 2 - Nonmaskable When this interrupt is called, the interrupt handler will print a parity error message. The segment addresses will be also be printed.
4. Interrupt Hex 3-Breakpoint
5. Interrupt Hex 4-Overflow
6. Interrupt Hex 5-Print Screen

This interrupt is used to copy the content of the screen to the printer. The current cursor position will be saved and restored when printing is completed.
7. Interrupt Hex 6-Reserved
8. Interrupt Hex 7-Reserved
9. Interrupt Hex 8 - Time of Day

The interrupt handler handles the timer interrupt from channel 0 of the timer. There are 18.2 interrupts per second. The interrupt handler keeps a count of interrupts since power on time. This can be used as the time of day. The interrupt handler also decrements the motor control count of the diskette, and turn off the diskette motor and reset the motor running flags when the count reach zero.
10. Interrupt Hex 9-Keyboard

This interrupt handler handles keyboard interrupt.
11. Interrupt Hex A - Reserved
12. Interrupt Hex B - Communications
13. Interrupt Hex C-Communications
14. Interrupt Hex D - Disk
15. Interrupt Hex E - Diskette

This interrupt handler handle the diskette interrupt.
16. Interrupt Hex F - Printer
17. Interrupt Hex 10-Video

This interrupt provides the CRT interface
18. Interrupt Hex 11-Equipment check

This interrupt handler reports the configuration of the system.
19. Interrupt Hex 12-Memory

This interrupt handler determines the amount of memory in the system.
20. Interrupt Hex 13-Diskette Disk This interrupt provides access to $5^{\prime \prime} 1 / 4$ diskette drive.
21. Interrupt Hex 14-Communications

This interrupt handler provides byte stream I/O to the communication ports.
22. Interrupt Hex 15-Cassette

Dummy cassette I / O routine. Always return the error code "invalid command".
23. Interrupt Hex 16-Keyboard This interrupt provides Keyboard support.
24. Interrupt Hex 17-Printer

This interrupt provides communication with the printer.
25. Interrupt Hex 18 - Resident BASIC
26. Interrupt Hex 19-Bootstrap

This interrupt handler is the boot strap loader which perform the following procedures.

- The fixed disk BIOS substitutes the interrupt 19 Boot strap vector by a pointer to the boot routine.
- The default disk and diskette parameter vectors is reset.
- The boot block from cylinder 0 sector 1 of the device will be read in.
- The Bootstrap sequence is:
> Try to load from the diskette into the boot location ($0000: 7 \mathrm{C} 00$) and transfer control there > If the diskette fails, the fixed disk is tried for a valid bootstrap block. A valid boot block on the fixed disk consists of the bytes 055 H OAAH as the last two bytes of the block.

27. Interrupt Hex 1A - Time of Day

This interrupt handler set and read the clock.
28. Interrupt Hex 1B - Keyboard Break

This interrupt handler will be called when the Ctrl and Break keys on the keyboard are pressed.
29. Interrupt Hex IC - Timer Tick

This interrupt handler will be called from the timer interrupt service routine.
30. Interrupt Hex 1D - Video Parameters

This interrupt vector points to a table containing the parameters for initializing the 6845 on the display adaptor.
31. Interrupt Hex IE - Diskette parameter

This interrupt vector points to a table containing the parameters used by the diskette drive.
32. Interrupt Hex 1F - Graphics Character Extensions.
33. Interrupt Hex 40 - Reserved

When an Fixed Disk Drive Adapter is installed, this interrupt is used to revector the diskette pointer.
34. Interrupt Hex 41-Fixed Disk Parameters

This interrupt vector points to a table containing the parameters used by the fixed disk drive.

5.2 Interrupt call summary

Service	Interrupt (Hex)	Register Input	Output	Description
Print screen	05	$\mathrm{AH}=05$	n / a	Send screen contents to printer. Status and result byte at lowmemory address hex 500 (0050:0000)
Video Services				
Set video mode	10	$\begin{aligned} & \mathrm{AH}=00 \\ & \mathrm{AL}=\mathrm{Video} \\ & \text { mode } \end{aligned}$	none	Video modes in AL: 00:40 $\times 25$ text, $16 \mathrm{~B} / \mathrm{W}$ 01:40 $\times 25$ text, 16/8 color 02:80×25 text, $16 \mathrm{~B} / \mathrm{W}$ 03:80×25 text, 16/8 color 04:320 x 200 graphics, 4 color $05: 320 \times 200$ graphics, 4 B/W 06:640 x 200 graphics, B/W 07:80×25 text, B/W
Set cursor size	10	$\begin{aligned} & \mathrm{AH}=01 \\ & \mathrm{CH}=\text { starting } \\ & \text { scan line } \\ & \mathrm{CL}=\text { ending } \\ & \text { scan line } \end{aligned}$	none	Color/Graphics Adapter uses lines 0-7 Monochrome Adapter uses lines 0-13
Set cursor position	10	$\begin{aligned} & \mathrm{AH}=02 \\ & \mathrm{BH}=\text { display } \\ & \text { page number } \\ & \mathrm{DH}=\text { row } \\ & \mathrm{DL}=\text { column } \end{aligned}$	none	
Read cursor position	10	$\begin{aligned} & \mathrm{AH}=03 \\ & \mathrm{BH}=\text { display } \\ & \text { page number } \end{aligned}$	$\mathrm{CH}=$ starting scan line Cl =ending scan line DH=row $\mathrm{DL}=$ column	
Read light-pen position	10	$\mathrm{AH}=04$	AH=pen trigger signal BX=pixel column $\mathrm{CH}=$ pixel row DH=character row DL=character column	
Set active display page	10	$\begin{aligned} & \mathrm{AH}=05 \\ & \mathrm{AL}=\text { page } \\ & \text { number } \end{aligned}$		

Scroll window up	10	$\mathrm{AH}=06$ AL=lines to scroll up $\mathrm{BH}=$ filler attribute $\mathrm{CH}=$ upper row $\mathrm{CL}=$ left column DH=lower row DL=right column	none
Scroll window down	10	$\mathrm{AH}=07$ AL=ines to scroll down $\mathrm{BH}=$ filler attribute $\mathrm{CH}=$ upper row CL=left column DH=lower row DL=right column	none
Read character and attribute	10	$\mathrm{AH}=08$ $\mathrm{BH}=$ display page number	AH=character $\mathrm{AL}=$ attribute
Write character and attribute	10	$\mathrm{AH}=09$ AL=character $\mathrm{BH}=$ page number $\mathrm{BL}=$ attribute CX = number of characters to repeat	none
Write character	10	$\mathrm{AH}=0 \mathrm{~A}$ AL=character $\mathrm{BH}=$ page number BL=color in graphics mode $\mathrm{CX}=$ count of characters	none
Set color palette	10	$\mathrm{AH}=\mathrm{OB}$ $\mathrm{BH}=$ palette color ID BL=color to be used with palette ID	none
Write pixel dot	10	$\begin{aligned} & \mathrm{AH}=\mathrm{OC} \\ & \mathrm{AL}=\text { color } \\ & \mathrm{CX}=\text { pixel column } \\ & \mathrm{DL}=\text { pixel row } \end{aligned}$	none
Read pixel dot	10	$\begin{aligned} & \mathrm{AH}=0 \mathrm{D} \\ & \mathrm{CX}=\text { pixel column } \\ & \mathrm{DL}=\text { pixel row } \end{aligned}$	AL=color read
Write character	10	$\mathrm{AH}=0 \mathrm{E}$ AL=character BL=color for TTY graphics mode	none
Get current video mode	10	$\mathrm{AH}=\mathrm{OF}$	$\mathrm{AH}=$ width in characters $\mathrm{AL}=$ video mode $\mathrm{BH}=$ page number

Equipment-List Service

Read diskette sectors	13	$\mathrm{AH}=02$ $\mathrm{AL}=$ number of sectors $\mathrm{CH}=$ track $\mathrm{CL}=$ sector number DH=head number DL=drive number ES:BX=pointer to buffer	$\mathrm{CF}=$ success $/$ failure signal AH=status code AL $=$ number of number sectors read	Status codes in AH: see diskette service 01
Write diskette sectors	13	$\mathrm{AH}=03$ $\mathrm{AL}=$ number of sectors CH=track CL=sector number $\mathrm{DH}=$ head number $\mathrm{DL}=$ drive number ES:BX=pointer to buffer	CF=success/ failure flag $\mathrm{AH}=$ status code $\mathrm{AL}=$ number of sectors written	Status codes in AH: see diskette service 01
Verify diskette sectors	13	$\mathrm{AH}=04$ $\mathrm{AL}=$ number of sectors $\mathrm{CH}=$ track number verified $\mathrm{CL}=$ sector number DH=head number $\mathrm{DL}=$ drive number	$\mathrm{CF}=$ success $/$ failure (signal) AH=status code $\mathrm{AL}=$ number of sectors	Status codes in AH: see diskette service 01
Format diskette track	13	$\mathrm{AH}=05$ $\mathrm{AL}=$ number of sectors $\mathrm{CH}=$ track number CL=sector number $\mathrm{DH}=$ head number $\mathrm{DL}=$ drive number $\mathrm{ES}: \mathrm{BX}=$ pointer to 4-byte address fiel Byte $1=$ track Byte 2=head Byte 3=sector Byte $4=$ bytes $/$ sect	CF=success/ failure signal AH=status code	Status codes in AH: see diskette service 01
Serial Port Services				
Initial- ize serial port parameters	14	$\mathrm{AH}=00$ DX=serial port number	AX=serial port status	Status bit settings: $00,01=$ word length $10=7$ bits; $11-8$ bits $02=$ stop bits: $0=1 ; 1=2$ 03, 04=parity: $00,01=$ none; $01=o d d ;$ 11=even 05, 06, 07 = baud rate; $000=110 ;$ $001=150 ;$ $010=360$; $011=600$ $100=1,200$ $101=2,400$ $110=\mathbf{4}, 800$ $111=9,600$

Send out one character	14	$\begin{aligned} & \mathrm{AH}=01 \\ & \mathrm{AL}=\text { character } \\ & \text { code } \\ & \mathrm{DX}=\text { serial } \\ & \text { port } \\ & \text { number } \end{aligned}$	AH=success/ failure status $\mathrm{AL}=$ modem status	AH bit setings: $00=$ data ready; $01=$ overrun error; $02=$ parity error; $03=$ framing error; $04=$ break detected; $05=$ transmission buffer register empty; $06=$ transmission shift register empty; 07=time out AL bit settings: $00=$ delta clear-to- send; 01二delta data-set- ready; $02=$ trailing edge ring detected; $03=$ change, receive line signal detected 04=clear-to-send; $05=$ data-set-ready; $06=$ ring detected; $07=$ receive line signal detected
Receive one character	14	$\begin{aligned} & \mathrm{AH}=02 \\ & \mathrm{DX}=\text { gerial } \\ & \text { port number } \end{aligned}$	$\mathrm{AH}=$ success $/$ failure status code $\mathrm{AL}=$ character	Status bit settings: see serial port service 01
Get serial port status	14	$\mathrm{AH}=03$	AX=status code	Status code bit settings: see serial port service 00
Cassette Tape services		Dummy service, alway returns a error code of invalid command.		
Keyboard Services				
Read next keyboard character	16	$\mathrm{AH}=00$	$\mathrm{AH}=$ scan code (auxiliary byte) $\mathrm{AL}=$ character co (main byte)	
Report whether character ready	16	$\mathrm{AH}=01$	ZF =ready or not AH=scan code (auxiliary byte) $A L=$ character co (main byte)	

Get shift status	16	$\mathrm{AH}=02$	AL=shift status bits	Shift status bits: Bit 0=1:right Shift depressed Bit $1=1$:left Shift depressed Bit 2=1:Ctrl depressed Bit 3=1:Alt depressed Bit 4=1:Scroll Lock active Bit 5=1:Num Lock active Bit 6=1:Caps Lock active Bit $7=1$ Insert state active

Printer Services

Send one byte to printer	17	$\begin{aligned} & \mathrm{AH}=00 \\ & \mathrm{AL}=\text { character } \end{aligned}$	$\mathrm{AH}=$ success $/$ failure Status code	Status bit settings: $0=$ time out $1=$ unused $2=$ unused $3=1: I /$ O error $4=1$:selected $5=1$:out of paper 6=1: acknowledge $7=1$: not busy
Initial. ize printer	17	$\mathrm{AH}=01$	AH=status code	Status code bit settings: see printer service 00
Get printer status	17	$\mathrm{AH}=02$	AH=status code	Status code bit settings: see printer service 00
Miscellaneous Services				
Switch control to BASIC	18	none	n/a	No return, so no possible output
Reboot computer	19	none	n / a	No return, so no possible output
Time-of-Day Services				
Read the current clock count	1A	$\mathrm{AH}=00$	AL=midnight sig CX=tick count, portion DX=tick count, portion	
Set current clock count	1A	$\mathrm{A} H=01$ CX=tick count, high portion DX=tick count, low portion	none	,

5.3 Laser Turbo XT BIOS Error Message

BEEPS	DESCRIPTION
1 long +1 short	Base 64K RAM (00000H- 0FFFFH) isn't usable. SOLUTION - Check RAM chips
1 long + 2 short	Video switches wrong for the installed adapter.
1 long + 5 short	SOLUTION - Check DIP switches and video selection.
	BIOS ROM check sum is incorrect. (Bad EPROM) SOLUTION - Replace BIOS chip.

Display Messages
VIDEO ERROR

BIOS couldn't find the display adapter requested by the DIP switches. BIOS is instead using the adapter it did find.
SOLUTION - Check DIP switches and video card.

KEYBOARD ERROR 0100
Keyboard did not respond. (No interrupt) SOLUTION Check internal conncctor on the keyboard.

Keyboard returned wrong test code xx.
SOLUTION - Replace keyboard.

KEYBOARD ERROR 04XX
Keyboard interrupt would not clear.
SOLUTION - Check Gate Array on Motherboard or replace the keyboard.

MEMORY ADDR ERROR SBBBB, DD
Problem with memory
addressing.
unconnected RAM less or
shorted address lines.
SOLUTION - Check the
RAM chips (replace one at a
time). If BBBB=0000 then
the problem was detected on
address bits A16-A 19; "S"
value (0-9) indicates the
lowest segment which failed.
If BBBB is non-zero, then
the problem was found on
address lines A0-A15 of the
segment "S". The "DD" tells
which data bits were wrong.

MEMORY ERROR SBBBB,DD
Other memory problem. The " S " is the 64 K segment (0-9). "BBBB" $=$ the offset where the error was found. "DD" = data error bits.

NOTE: The BIOS will not test memory beyond an error and will reduce memory size to exclude the faulty memory.

If memory size is displayed with a decimal point like this:

SYSTEM MEMORY SIZE $=256 . \mathrm{K}$
Means that DIP switch \#1 is on, and memory beyond 256 K will always be ignored. SOLUTION Check DIP switches.

DRIVE A ERROR XX "XX" is the INT 13 error code. If "XX" = 80 Time out (no interrupt, missing, or bad adapter) "XX" $=40$ Seek error (track 0 not found, missing drive) "XX" $=20$ Bad NEC controller chip. SOLUTION - Check all plugs and cables on drive. Check DIP switches on motherboard. Make sure drive select switch is correct. Replace controller card. Replace disk drive.

CHAPTER 6

EMS DRIVER

6. EMS DRIVER

6.1 PROGRAMS INSIDE THE EMS DRIVER PROGRAM DISKETTE

EMM.SYS - The expanded memory manager driver program
This is the driver program for using the expanded memory. It must be installed before the expanded memory can be used.

ERAMDISK.SYS - the RAM disk driver program for the expanded memory.
This is the driver program for implementing a RAM disk in the expanded memory. The RAM disk has a drive ID which is the first unused drive ID in your computer system. For example, if your system has two floppy disk drives, the drive ID of the RAM disk will be C:. If your system has two floppy disk drives and one hard disk, the drive ID of the RAM disk will be D.: You need not change the setting of the DIP switch in your computer mainboard as you implement a RAM disk.

CRAMDISK.SYS - The RAM disk driver program for the conventional memory.

This RAM disk driver program is similar to ERAMDISK.SYS except that the RAM disk occupies conventional memory. The naming of the RAM disk drive ID is the same as that in ERAMDISK. SYS. If both ERAMDISK.SYS and CRAMDISK.SYS are implemented, they will have separate drive IDs. If the CRAMDISK. SYS is implemented, some application programs (e.g. SYMPHONY) which requires large conventional memory size cannot be run.

6.2 PREPARING A EMS SYSTEM DISKETTE

To prepare a system diskette with the EMS driver programs, copy the three driver programs to a bootable system diskette. To copy the driver programs to your system diskette, put your system diskette in drive A: and the EMS driver program diskette in drive B:. Enter the following command.
COPY B: *.SYS A: <CR>

Before you can use the driver programs, you have to create a CONFIG.SYS file in your system diskette. The function of the CONFIG.SYS file is to load the device driver programs at boot time. You can enter the following commands to create a CONFIG.SYS file.

COPY CON: A: CONFIG.SYS ,CR> DEVICE = EMM.SYS M3 IO <CR> DEVICE = ERAMDISK.SYS $512<$ CR > DEVICE = CRAMDISK.SYS 128 <CR> <F6> <CR>

Remark:
<CR> is the ENTER key and <F6> is the F6 function key. The above CONFIG.SYS file is only an example. The entries M3, IO, 512, 128 are parameters for the device drivers. They may be varied for different system configurations or applications. If a RAM disk for conventional memory is not required, the command line DEVICE=CRAMDISK.SYS can be omitted. The command line DEVICE = EMM.SYS must be entered before DEVICE = ERAMDISK.SYS.

Parameters in the device drivers:

EMM.SYS

Format: DEVICE=EMM.SYS Ma Ib [Ib...]
M is the parameter heading defining the starting frame address of the memory in the EMS card. The ' a ' after M represents a number which can be 0 to 7 .

M parameter	Starting frame address (in Hex)
M0	C4000
M1	C8000
M2	CC000
M3	D0000
M4	D4000
M5	D8000
M6	DC000
M7	E0000

The M parameter can be defined in any of the above values but you must make sure the address space of the EMS memory does not conflict with the interface card with Read Only Memory (ROM). The EMS card occupies 64 K address space starting from the frame address (i.e. if M0 is defined, EMS card occupies address C4000D3FFF). If your system contains a hard disk controller card which has a interface ROM with address C8000CFFFF, parameter M0 and M1 should not be used. It is recommended to use parameter M3, since the address space does not have conflict with most common interface card.

I is the parameter heading defining the I / O port address of the EMS card installed. The ' b ' after I represents a number which can be 0 to 6 .

I parameter	I/O port address of EMS board (in Hex)	EMS $\mathbf{1}$	DIP $\mathbf{2}$	Switch $\mathbf{3}$
10	208	OFF	ON	ON
I1	218	ON	OFF	ON
I2	258	OFF	OFF	ON
I3	268	ON	ON	OFF
I4	2 A 8	OFF	ON	OFF
I5	2B8	ON	OFF	OFF
I6	2 EF 8	OFF	OFF	OFF

You should define the I parameter according to the DIP switch setting. If your computer system has installed more than one EMS cards (when you fill up more than 2 banks of RAM, you should configure the expanded memory as two cards), the DIP switch setting on each EMS card must be different. You should define one I parameter for one EMS card, two I parameters for two EMS cards installed and so forth. For example, if you have four EMS cards installed, you can define the parameters as follows.

DEVICE=EMM.SYS M3 I0 I1 I2 I3

ERAMDISK.SYS
Format: DEVICE=ERAMDISK.SYS nnnn
nnnn represents a number which defines the RAM disk size in Kbyte of memory. The minimum number is 16 and the maximum number depends on the expanded memory size in your system. If four banks are fully filled with RAM, there are a total of 1024 Kbyte of expanded memory. If these are still not enough for your uses, you can purchase our Expanded Memory card which allows expansion to a maximum of 2 Mbyte per card. (Note: If your system diskette is MSDOS version 2.0 or 2.1 the RAM disk size cannot be defined more than 2048. If your system diskette is MSDOS version 3.0 , $3.1,3.2$ or later version, the RAM disk size can be defined up to 8192 .

CRAMDISK.SYS
 Format: DEVICE=CRAMDISK.SYS nnn

nnn represent a number which defines the RAM disk size in Kbyte of memory. The minimum number is 16 and the maximum number depends on the available conventional memory size. If your application program requires large memory size, it is not recommended to implement this RAM disk.

6.3 PROGRAMMING THE EXPANDED MEMORY

6.3.1 PROGRAMMING GUIDELINE

When using the expanded memory, the programmer should assumes the following:

- There will be more than one expanded memory board.
- Other resident programs may also use expanded memory.
- Program cannot rely on the value of certain register after a function call.
- The size of each page is 16 K bytes.
- Four 16 K -byte pages can be mapped into a 64 K byte region. The starting address of this 64 K region is returned by EMM function 2. The 64 K bytes region is called page frame.
- The stack should not be located in the expanded memory.
- Since the EMM uses INT 67 H , other programs should not use this interrupt vector.
- After testing the presence of the EMM, the page frame base address should be requested.
- The number of free 16 K -byte page should be requested so that the maximum number of pages the program can allocated can be determined.
- The EMM functions provide a set of standard expanded memory functions. Programs that deal directly with the hardware or that don't adhere to the specification will have compatibility problem.

6.3.2 Checking the Presence of EMM

There are two methods to check the presence of EMM.

- Issue an open request (MS-DOS function 3DH) using the name of the EMM driver "EMMXXXX0". If the request is successful, issue an ' I / O control for device' command (MS-DOS function 44 H) with a 'get device information' command. If the status returned in register AL is 0 FFH , then the driver is present. After that, a 'close file handle' command (MS-DOS function 3EH) should be issued to close the EMM device driver.
- Use the INT67H vector to check the device header. If the EMM is present, at offset 0 AH of the header will have the string EMMXXXX0. This method must be use if the called program is a device driver or it interrupt DOS during file system operation.

6.3.3 EMM Functions

After ensuring that the Expanded Memory Manager (EMM) is present, an application program communicates with the EMM directly via a software interrupt. The calling sequence for the EMM is:

mov ah, function	$;$ AH contains the function
number	
$;$	other registers are loaded with
$;$	function-specific arguments.
int $67 \mathrm{~h} \quad$	transfer to Expanded Memory Manager.

If an EMM call is successful, the value zero is returned in register AH ; otherwise, AH will contain an error code.

Int 67 H

EMS Function 01H

Get status

Tests whether the EMM and expanded memory hardware is working properly.

INPUT $\mathrm{AH}=40 \mathrm{H}$

OUTPUT $\mathrm{AH}=$ status
00 H function successful
$80 \mathrm{H} \quad$ internal error in $E M M$ software
81 H malfunction in
expanded memory
hardware
$84 \mathrm{H} \quad$ function requested by application not de fined

Int 67 H

EMS Function 02H
Get page frame segment
Get the segment address of the page frame used by the EMM

INPUT AH $=41 \mathrm{H}$
OUTPUT If ok
$\mathrm{AH}=00 \mathrm{H}$
$\mathrm{BX}=$ segment of the page frame

If failed:

$\mathrm{AH}=$ error code
80 H internal error in $E M M$ software
81 H malfunction in expanded memory hardware
84H function requested by application not defined

Int 67 H

EMS Function 03H
Get unallocated page count
Gct the total number of pages present in the system, and the number of those pages that are free.

Input $\mathrm{AH}=42 \mathrm{H}$
OUTPUT If ok
$\mathrm{AH}=00 \mathrm{H}$
$\mathrm{BX}=$ unallocated pages
$D X=$ total number of pages in the system

If failed:

$\mathrm{AH}=$| error code | |
| :--- | :--- |
| 80 H | internal error in EMM
 software |
| 81 H | malfunction in
 expanded memory
 hardware
 function requested by
 application not defined |

Int 67 H
EMS Function 04H
Allocate Pages

Request the EMM for using the expanded memory, obtains a handle and has a certain number of logical pages allocated under the control of this handle.

INPUT AH $=43 \mathrm{H}$
$\mathrm{BX}=$ number of logical pages to allocate

OUTPUT If OK

$\mathrm{AH}=00 \mathrm{H}$
$\mathrm{DX}=$ handle
If failed:
$\mathrm{AH}=$ error code $80 \mathrm{H} \quad$ internal error in $E M M$ software
$81 \mathrm{H} \quad$ malfunction in expanded memory hardware
84H function requested by application not defined
85H no more handles available
87 H allocation request specified more logical pages than are physically available in system; no pages allocated

88 H	allocation request specified more logical pages than are currently available in system (request does not exceed physical pages that exist, but some are already allocated to other handles); no pages allocated
89 H	Zero pages requested

Int 67 H
EMS Function 05H
Map Handle page
Maps logical pages of expanded memory assigned to a handle onto one of the four physical pages.

INPUT $A H=44 H$
$\mathrm{AL}=$ physical-page number (0-3)
$B X=$ logical-page number
DX $=$ handle
OUTPUT AH = status
00 H function successful
80 H internal error in EMM software
81 H malfunction in expanded memory hardware
83H invalid handle
84H function requested by application not defined

8AH	logical page requested
	to be mapped is outside range of logical
	pages assigned to handle
8 BH	illegal physical-page number in mapping
	request (not in range 0-3)

Int 67H
EMS Function 06H
Deallocate Pages
Deallocates the logical pages of expanded memory currently allocated to a handle.

INPUT	$\begin{aligned} & \text { AH } \\ & \text { DX } \end{aligned}$	$=$	$\begin{aligned} & 45 \mathrm{H} \\ & \text { EMM } \end{aligned}$	
OUTPUT	AH	$=$	status	
			00H	function successful
			80 H	internal error in EMM software
			81 H	malfunction in expanded memory hardware
			83 H	invalid handle
			84H	function requested by application not defined
			86 H	error in save or restore of mapping context

Int 67 H
EMS Function 07H
Get EMM version

Returns the version number of the EMM software.

INPUT AH $=46 \mathrm{H}$

OUTPUT If OK

$\mathrm{AH}=00 \mathrm{H}$
$\mathrm{AL}=\mathrm{EMM}$ version number in BCD format. The upper four bits contain the integer digit. The lower four bits contain the fractional digit.

If failed:

$\mathrm{AH}=$ error code
80 H internal error in EMM software
81 H malfunction in
expanded memory
hardware
84H function requested by application not defined

Int 67 H
EMS Function 08H
Save Map
Save the contents of the expanded memory pagemapping registers on the expanded memory boards, which belong to a EMM handle.

INPUT AH $=47 \mathrm{H}$
DX $=$ handle
\(\left.$$
\begin{array}{ll}00 \mathrm{H} & \begin{array}{l}\text { function success ful } \\
\text { internal error in EMM } \\
\text { software }\end{array}
$$

malfunction in

expanded memory

hardware

invalid handle

function requested by

application not de fined\end{array}\right] \mathrm{H} 4 \mathrm{H} \quad 8 \mathrm{CH} \quad\)| page-mapping hardware |
| :--- |
| state save area is full |
| save of mapping |
| context failed, save |
| area already contains |
| context associated with |
| requested handle |

Int 67 H
 EMS Function 09H
 Restore page map

Restores the contents of all expanded memory hardware page-mapping registers to the values for particular handle.

INPUT AH $=48 \mathrm{H}$
$\mathrm{DX}=$ EMM handle

OUTPUT AH $=$ status 00 H function successful 80 H internal error in $E M M$ software
81H malfunction in expanded memory hardware
83H invalid handle 84 H function requested by application not de fined
8 EH restore of mapping context failed; save area does not contain context for requested handle.

Int 67 H
EMS Function 0AH
Reserved

Int 67H
EMS Function 0BH
Reserved

Int 67 H

EMS Function 0CH
Get Handle count
Gets the number of active EMM handles.

INPUT AH $=4 \mathrm{bh}$

OUTPUT If OK
$\mathrm{AH}=00 h$
$\mathrm{BX}=$ number of EMM handles
If failed:
$\mathrm{AH}=$ error code
80H internal error in EMM software
81 H malfunction in expanded memory hardware
83H invalid handle
84 H function requested by application not defined

Int 67H
EMS Function 0DH

Get EMM Handle Pages

Returns the number of logical expanded memory pages allocated to a specific EMM handle.

INPUT AH $=4 \mathrm{CH}$
$D X=$ EMM handle

OUTPUT If OK
$\mathrm{AH}=00 \mathrm{H}$
$B X=$ number of logical pages
If failed:
$\mathrm{AH}=$ error code
80 H internal error in EMM software
81 H malfunction in expanded memory hardware invalid handle
83H invalid hande
84 H function requested by application not defined.

Int 67 H
EMS Function 0EH
Get All EMM Handle Pages
Returns an array of all the active handles and the number of logical expanded memory pages allocated to each handle.

INPUT AH $=4 \mathrm{DH}$
ES:DI $=$ segment:offset of array to receive information

OUTPUT If OK

$\mathrm{AH}=00 \mathrm{~h}$
$\mathrm{BX}=$ number of active EMM handles. Each entry in the array is composed of two words, the first contains the EMM handle while the second contains the number of pages allocated to that handle.

If failed:
$\mathrm{AH}=$ error code
80 H
internal error in EMM software
81 H malfunction in
expanded memory
hardware
function requested by application not defined

Int 67 H
EMS Function 0FH
Get / Set Page Map
Saves or sets the contents of the EMS page-mapping registers on the expanded memory boards.

INPUT $\mathrm{AH}=4 \mathrm{EH}$
$\mathrm{AL}=00 \mathrm{H}$ if getting mapping registers into array
01 H if setting mapping registers from array
02 H if getting and setting mapping registers in one operation
03 H if returning size of page-mapping array DS:SI $=$ segment:offset of array holding information (subfunction 01H, $02 H$)
ES:DI = segment:offset of array to receive information (subfunction 00H, 02 H)

OUTPUT If OK

$\mathrm{AH}=00 \mathrm{H}$
$\mathrm{AL}=$ bytes in page-mapping array (subfunction 03 H only)

Array pointed to by ES:DI receives mapping information (subfunctions 00 H and 02 H)

If failed:	
$\mathrm{AH}=$	error code 80 H
	81 H
internal error in $E M M$ software malfunction in	
expanded memory	

CHAPTER
 7

SERVICING

7. SERVICING

7.1 Circuit Description

7.1.1 Oscillator Circuit

Various system timing signals are generated by two crystal oscillators. The circuit of the oscillators are shown in Fig 7.1

Fig 7.1 Schematic diagram of the crystal oscillator

7.1.2 CPU \& Buffers

The 8088-1 CPU is a 8-bit data bus and 16-bit internal architecture microprocessor builds on HMOS technology. The CPU can be run at a clock frequency of 10 MHz with 33% duty cycle, this signal is obtained from Gate Array A1. Fig 7.2 shows the interface to the $8088-1$ CPU.

Fig 7.2 Interface to 8088-1 CPU

7.1.3 ROM

On the PCB, there is two sockets for installing ROMs, which is situated at the left middle of the PCB. The leftmost is for installing BIOS using 2764, the other one is for installing BASIC ROM using 27256. Fig 7.3 shows the schematic circuit diagram of ROM.

Fig 7.3 Schematic circuit diagram of ROM.

The timing diagram of the ROM 2764 and 27256 is shown in Fig 7.4 and Fig 7.5 respectively.

Fig 7.4 Timing diagram of 2764 ROM read

Fig 7.5 Timing diagram of 27256 ROM read

7.1.4 RAM

The computer can supports a maximum of 640 K conventional memory and 1 M expanded memory.

The 640 K conventional memory have four rows of DRAM, the first two rows consists of two 4464 and one 4164. The second two rows consists of nine 41256. The Expanded Memory should be installed with 41256. The RAMs are accessed by the RAS and CAS signals which are obtained from the Gate Array A2.

7.1.5 Speaker circuit

The speaker should be connected to jumper J11. The Speaker circuit is shown in Fig 7.6.

Fig 7.6 Speaker Circuit

7.1.6 Keyboard Lock and LED indicator

Jumper J12 is used for connecting Keyboard Lock, power indicator and High Speed indicator, the jumper should be connected as shown in Fig 7.7.

Fig 7.7 circuit of display panel

all right when AEN is high

Is controller card \qquad Replace
functioning?

drive

(5)

Is \downarrow from gate array

Is DIP SWI
NO
Set DIP SW properly
BIT 5 \& BIT 6 set
correctly?
\downarrow
Is adapter card
NO Replace adapter card all right?

\qquad
NO
Plug it in
of monitor in?
\downarrow Yes
Check monitor
cable

END

APPENDIX A

GATE ARRAY

 A1 SPECIFICATION
APPENDIX A
 GATE ARRAY A1 SPECIFICATION

A. 1 A1 Functional Description

The gate array $A 1$ is used to replaced most of the $I B M^{\circledR}$ $\mathrm{PC} / \mathrm{XT}$ main board logics. It integrates the functions of the following chips:

- 8284A clock generator
- 8288 bus controller
- 8259A programmable interrupt controller
- 8253-5 programmable interval timer
- 8255A-5 programmable peripheral interface

In addition, it also incorporates the keyboard data converter, the wait state generator, DMA timing generator and I/O decoding circuitry.

The gate array Al was designed to support high speed operation of the microprocessor. The processor can be switched to operate at the standard speed (4.77 MHz) or higher speed through the control of software.

A. 2 A1 FUNCTION DIAGRAM

A. 3 Gate Array A1 Pin Usage

$\begin{aligned} & \text { Pin } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & \text { type } \end{aligned}$	Name	Description
2	I	A9	CPU address line
3	I	A8	"
4	I	A7	"
5	I	A6	"
6	I	A5	"
7	I	A4	"
8	I	A3	"
9	I	A 2	"
10	I	A1	"
11	I	A0	"
28	I/O	D7	CPU data line
29	I/O	D6	${ }^{\prime \prime}$
30	I/O	D5	${ }^{\prime \prime}$
31	I/O	D4	"
32	I/O	D3	"
33	I/O	D2	"
34	1/O	D 1	"
35	I/O	D0	"

12	I	S2	Status Inputs from CPU.			
13	I	S1	External pull up needed.			
14	1	So	S2	S1	S0	Signal activated
			0	0	0	INTA (internal signal)
			0	0	1	IOR
			0	1	0	IOW
			0	1	1	halt (no signal active)
			1	0	0	MEMR
			1	0	1	MEMR
			1	1	0	MEMW
			1	1	1	no signal active
16	I	LOCK	Lock signal from CPU. Disable DMA operation when low.			
17	I	F14M	14.31818 MHz clock input. It is divided by 3 to obtain the CPU clock at standard speed.			
18	I	F24M	High frequency clock input. It is divided by 3 to obtain the CPU clock at high speed.			
77	O	CKX3	Three times the frequency of CLK88. Always synchronizes with CLK 88.			
19	O	CLK 88	Clock for the CPU. 33% duty cycle. 4.77 M at standard speed. At high speed mode equals to F24M divided by 3.			

21 O ALE Address latch enable. (active high) This signal is used to strobe an address into the address latches during T .

| 22 | O DEN | Data Enable. (active low, the
 corresponding signal of 8288 is
 active high)
 It is used to enable data onto
 either the local or system data bus. |
| :--- | :--- | :--- | :--- |
| 23 | O DTR | Data Transmit/Receive
 It establishes the direction of data
 flow through the transceivers. A
 high indicates Transmit and a low |
| indicates Receive. | | |

26 O READY Ready signal to CPU.
It is used to insert wait states to the CPU.

It serves to insert wait state to the CPU during memory read or write operation. A wait state is only insert under the following conditions:

- the system is in high speed mode
- MWAIT is high

MWAIT must be stable throughout the period when MEMR or MEMW is active.
27 O INTR Interrupt Request to CPU

25 O NMI | Non-maskable Interrupt request to |
| :--- |
| CPU |

24 I NPNPI Interrupt Request from the numeric processor. When this signal is active (high), a NMI will be initiated if the signal SW2 is also high.

44	I	IRQ7	Interrupt requests from peripherals.
45	I	IRQ6	They are prioritized with IRQ2 as
46	I	IRQ5	the highest priority and IRQ7 as
47	I	IRQ4	the lowest. An Interrupt is
48	I	IRQ3	generated by raising an IRQ line (low to high) and holding it high until it is acknowledged by the
CPU. I IRese lines are pulled low internally.			

1 I IOCHK I/O Channel Check When this input is low, a NMI will be initiated to the CPU. command.

60	I	EXRES	Active low reset input. Serves for power up reset. Internal Schmitt trigger input.
100	I	KYRES	Active low reset input. Serves for external hardware reset. Internal Schmitt trigger input.
49	O	SYRES	Active low reset output. It is sychronized with the falling edge of CLK88.
50	I	SW8	DIP Switch bit 8
51	I	SW7	DIP Switch bit 7
52	I	SW6	DIP Switch bit 6
53	I	SW5	DIP Switch bit 5
54	I	SW2	DIP Switch bit 2
55	I	SW1	DIP Switch bit 1

56 I/O KBDAT Keyboard data input.
It will be forced low after receiving an keyboard code.

| 57 I/O KBCLK | Keyboard clock
 The keyboard data is strobed using
 the falling edge of the keyboard
 clock. |
| :--- | :--- | :--- |
| Can be forced low through control
 of an internal register. | |
| $59 \quad$ O KDTEN | |

61 I PARER Parity error input

This is used to detect parity error of RAM. This pin should be tied to the PARER pin of gate array A2.
If parity check is not needed, tied this pin to ground.

94 I PERCK Parity error clock
This is used to strobe the PARER signal. Normally this pin should be tied to the MEMR signal.

66 O DMACS DMA controller chip select. active through the address range $000 \mathrm{H}-01 \mathrm{FH}$.

67 O RYDMA Ready signal to the DMA controller

68	O	DCLK	Clock output to the DMA controller
70	O	HOLDA	Hold acknowledge to the DMA controller. It is an active high signal indicating that the CPU has relinquished control of the bus.
71	I	HRQ	Hold Request from the DMA controller.
20	O	AEN	Address Enable When this line is active (high), the DMA controller has control of the address bus, data bus and read write command lines (IOR, IOW, MEMR, MEMW).
96	O	DMAAE	DMA address enable Active (low) during DMA operation. It serves to control address buffers of the DMA controller.
95	I	DACK0	DMA acknowledge 0
72	O	DREQ0	DMA request to the DMA controller channel 0 . It is an active high signal which originates from channel 1 of the internal programmable interval timer. This signal is cleared when DACK 0 is low. Normally DMA channel 0 serves the function of Dynamic RAM refreshing.
73	OZ	ADM0	To A0 of DMA controller.
74	OZ	ADMI	To Al of DMA controller.

75	OZ	ADM2	To A2 of DMA controller.
76	OZ	ADM3	To A3 of DMA controller. ADM0 - ADM3 will be tri-stated during DMA operation.

36	O	DIR	Direction control of external data buffer. For large system, the D7 - D0 needed be buffered by external transreceiver. When DIR is low, data is transferred from the Al to external.
64	I	DCNT1	Data buffer control I If the data transreceiver is shared by the DMA controller, tied this pin to DMACS, otherwise to Vcc
79	I	DCNT2	Data buffer control 2 If the data transreceiver is shared by ROM 0, tied this pin to the CSO signal of gate array A2, otherwise to Vcc
80	I	DCNT3	Data buffer control 3 If the data transreceiver is shared by ROM 1 , tied this pin to the CS1 signal of gate array A2, otherwise to Vcc.

97	I	SLWIN	CPU speed select
			A high selects standard speed
			$($ CLK $88=4.77 \mathrm{MHz}$), a low selects
			high speed (CLK88 = F24M / 3).
			Normally this pin should be tied to SLWOT

98	O	SLWOT	CPU speed control It serves to control the speed of the CPU. This signal will be low when switched to high speed mode. However, it will be forced high under the following condition:
- when CPU is doing I/O operation.			
- when the system is doing DMA			
operation.			

92	I	GRDE	
93	O	PDIR	equals to (IOR AND IOW) OR (BUFEN AND RTCEN AND NOT COMEN AND GRDEN) This pins are garbage collector for peripherals. For normal design just tie the inputs to ground and left the outputs unused.
69	I	TEST	Test pin. Must tie it to ground.
15			GROUND
65			GROUND
41			Vec
91			Vcc

17. READY inactive delay	0	-10
18. EXRES,KYRES setup time	35	
19. SYRES delay	3	18
20. DCLK high delay (CLK $88 / 2$)	5	25
21. DCLK low delay (CLK88/2)	5	27
22. HOLDA delay	4	20
23. AEN active delay	2	10
24. DMAAE active delay	4	24
25. DCLK high delay (CLK88)	3	16
26. DCLK low delay (CLK 88)	10	46
27. HOLDA inactive delay	9	45
28. AEN inactive delay	2	18
29. DMAAE inactive delay	2	17
30. RYDMA active delay	12	60
31. RYDMA inactive delay	2	16
32. ADM0-3 tristate delay	7	37
33. AMD0-3 active delay	7	37
34. SLWOT rising delay from CLK 88	5	26
35. SLWOT falling delay from CLK88	4	24

36. SLWOT rising delay from IOR, IOW	8	39
37. SLWOT falling delay from IOR,IOW	8	40
38. MWAIT set up time	12	
39. MWAIT hold time	7	
40. IORDY active set up time	58	
41. IORDY inactive set up time	45	
42. DMACS active delay	10	52
43. DMACS inactive delay	7	37
44. NMI active delay from NPNPI	7	38
45. NMI inactive delay from NPNPI	8	44
46. Pulse width of IOCHK	20	
47. NMI active delay from IOCHK	9	47
48. NMI inactive delay from IOW	12	61
49. PARER to PERCK set up time	7	
50. NMI to PERCK delay	8	41
51. SEL58 delay from IOW	9	49
52. DREQ0 delay from DACK0	8	44
53. KBDAT to KBCLK set up time	-420	
54. KBDAT to KBCLK hold time	1260	
55. KDTEN, KCKEN delay from IOW	11	55

56. DIR active delay from DCNT2, DCNT3	8	39
57. DIR inactive delay from DCNT2, DCNT3	8	39
58. STEP delay from FRSTP, RWSEK	7	37
59. FTRK0 delay from RWSEK, TRK0	7	38
60. RDDAT delay from VC0, SEPDA	7	38
61. PDIR active delay from IOR, IOW	9	46
62. PDIR inactive delay from IOR, IOW	7	37
63. PDIR delay from BUFEN, RTCEN, COMEN, GRDEN	9	45

AX TIMING DIAGRAM

IOR, IOW

SLWOT

MEMR,
MEMR,

MWAIT

A9-A5, AEN

DMACS

10w
(TO PORT IFOH)

DREQ0
DACKO

LOw

KDTEN, KCKEN

DCNT2, DCNT3

DR

FRSTP, RWSEK
TR0, YC0
SEPDA
STEP

FTRK0

RDDAT

1OR, IOW

BUFEN, RTCEN COMEN, GRDEN

APPENDIX B

GATE ARRAY
A2 SPECIFICATION

Appendix B
 Gate array A2 specification

B. 1 A2 functional description

The gate array A2 integrates the following functions:

- Support system RAM up to 640 K .
- Support Expanded Memory which conforms to the Lotus ${ }^{\circledR} /$ Intel ${ }^{\circledR}$ Expanded memory standard. A maximum of 4 Mbyte can be added.
- DRAM parity checking circuitry.
- ROM address decoding.
- DMA page register.

B. 2 A2 Function diagram

B. 3 Gate Array A2 pin usage

$\begin{aligned} & \text { Pin } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Name	Description
71	I/O	A19	CPU address line
72	I/O	A18	"
73	I/O	A 17	"
74	I/O	A16	The contents of the DMA page register will be output on A19 A16 during DMA operation
75	I	A 15	CPU address line
76	I	A 14	"
77	I	A13	"
78	I	A 12	"
79	I	A11	"
80	I	A 10	"
81	I	A9	"
82	I	A8	"
83	1	A7	"
84	I	A6	"
85	I	A5	"
86	I	A4	"

87	I	A3	"
88	I	A2	"
89	I	A 1	"
90	I	A0	"
62	I/O	D7	CPU data line
61	I/O	D6	"
60	I/O	D5	"
58	I/O	D4	"
56	I/O	D3	"
55	I/O	D2	"
57	I/O	D1	"
59	I/O	D0	"
96	I	IOR	I/O read.
95	I	IOW	I/O write.
94	I	MEMR	Memory read.
93	I	MEMW	Memory write.
42	I	RESET	This is an active low reset signal with schmitt trigger input level.
40	I	DMAAE	DMA address enable Control output of A19-A16, When it is low, contents of DMA page register will be output on A19-Al6.

70	I	AEN	address enable
99	I	DACK0	DMA acknowledge 0
100	I	DACK2	DMA acknowledge 2
98	I	DACK 3	DMA acknowledge 3
45	I	SW3	DIP-SW 3
44	I	SW4	DIP-SW 4 SW3 and SW4 are used to select size of system RAM :
$\begin{aligned} & 52 \\ & 53 \\ & 54 \end{aligned}$	I	$\begin{aligned} & \text { ESW2 } \\ & \text { ESW1 } \\ & \text { ESW0 } \end{aligned}$	ESW2 - ESW0 are used to control I/O address of Expanded Memory board 0
$\begin{aligned} & 49 \\ & 50 \\ & 51 \end{aligned}$	I I I	ESW5 ESW4 ESW3	ESW5 - ESW3 are used to control I/O address of Expanded Memory board 1
$\begin{aligned} & 46 \\ & 47 \\ & 48 \end{aligned}$	I I I	ESW8 ESW7 ESW6	ESW8 - ESW6 are used to control I/O address of Expanded Memory board 2
97	I/O	MD8	Memory Data Bit 8 It connects directly to bit 8 of DRAM to provide error detection.

34 O PARER Parity error output
It is the output of the parity checking circuit. It should be connected to the PARER input of gate array Al.

69 OZ IOCCK I/O channel check
This signal provides parity check for the Expanded Memory. A low indicates parity error. A subsequent memory write will reset it to normal state (tri-stated). System RAM parity error is NOT checked by this signal, so this pin is useful when the A2 is used alone on an Expanded Memory Card.
43 I CLK88 System Clock input. It should be connected to the CPU clock.

39 I CKX3 High frequency Clock input.
This pin should be tied to a signal which is three times the frequency of CLK88 and synchronized with it. It is used to generated the RAS, CAS and multiplexed address timing.

66 I DYLIN Delay line select.
When tied to high, all RAM timing will be controlled by an external delay line. For some applications the CKX3 signal is unavailable, then a delay line is necessary for providing RAS and CAS timing.

63 I DY2 When DYLIN is high, the RAM multiplexed addresses will be controlled by this signal.
A low selects column addresses.

64	I	DY1	When DYLIN is high, the CAS signal will be delayed signal.
35	O	CS0	ROM 0 Chip Select Memory address range : FE000H - FFFFFH
36	O	Cs1	ROM 1 Chip Select Memory address range : F6000H - FDFFFH
10	O	RAS0	Row address strobe 0
11	O	RAS1	Row address strobe 1
12	O	RAS2	Row address strobe 2
13	O	RAS3	Row address strobe 3
14	O	RAS4	Row address strobe 4
16	O	RAS5	Row address strobe 5
17	O	RAS6	Row address strobe 6
18	O	RAS7	Row address strobe 7
19	O	RAS8	Row address strobe 8
20	O	RAS9	Row address strobe 9

3	O	CAS5	Column address strobe 5
2	O	CAS6	Column address strobe 6
1	O	CAS7	Column address strobe 7
21	O	MA9	Multiplexed address for DRAM
22	O	MA8	"
32	0	MA8A	"
23	O	MA7	"
24	O	MA6	"
25	O	MA5	"
26	O	MA4	"
28	O	MA3	"
29	O	MA2	"
30	O	MA1	"
31	O	MA0	"
37	I	S464	Select 4464 Selects 4464 instead of 41256 as system RAM when this signal is high.
38	I	IMBDR	Select 1 Mbit DRAM When this signal is high, 1 Mbit DRAM can be used to provide 640 K of system memory, the remaining 384 K is used as Expanded Memory.

67	O	DIR	Direction control for data transreceiver. For large system, D0-D7 needed be buffered by data transreceiver. A low of DIR indicates data to be read from A2 or the RAM. The data buffer is shared by A2 and the RAM.
68	O	RAMSL	RAM select A low indicates RAM (both system and expanded RAM) is being accessed by the CPU.
92	O	EMADV	Expanded Memory address Valid A low indicates Expanded Memory is being accessed by the CPU.
33	O	EM5	Expanded memory page register Bit 5. When the expanded memory is being accessed by the CPU, bit 5 of the active page register is output on this pin (but inverted). If the expanded memory is implemented using 41256, then this signal can be used with A9 to decode four CAS signals.
4			Not used
27			Not used
15			Ground
65			Ground
41			Vcc
91			Vcc

B. 4 GATE ARRAY A2 AC CHARACTERISTICS $(\mathrm{Vcc}=5 \mathrm{~V}+/-5 \%, \mathrm{Ta}=0 \mathrm{TO} 70 \mathrm{C}$, pin capacitive load $=$ 50 pF)		
	$\begin{aligned} & \operatorname{Min} \\ & (\mathrm{ns}) \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & (\mathrm{ns}) \end{aligned}$
1. A19-A16 active delay	9	41
2. A19-A16 inactive delay	7	33
3. RAMSL active delay	14	63
4. RAMSL inactive delay	14	61
5. EMADV active delay	12	54
6. EMADV inactive delay	11	50
7. RAS0 active delay	8	38
8. RAS0 inactive delay	7	30
9. RAS1-RAS9 active delay	10	45
10. RAS1-RAS9 inactive delay	10	45
11. MA0-MA9 delay from CLKX3	9	44
12. MA0-MA9 delay from MEMR	10	50
13. CAS0-CAS7 delay from CLKX3	12	55
14. CAS0-CAS7 delay from MEMR	9	43
15. CAS0-CAS7 delay from CLK 88	10	48
16. MA0-MA9 delay from DY2	10	45
17. MA0-MA9 delay from DY2	10	46

18. CAS0-CAS7 active delay
from DY1 $\quad 12$ 53

DAMME

16-A19

A19-A14

RAMSL

EMADV

(DYLIN = LOW)

CLK88

MEMW

CASO-CAS7
(WRITE)
delay To allow
MORE TIME FOR
PARITY CALCULATION)

A2 TIAING
$\underset{(\text { DYLIN }}{\text { DY2 }}=\mathrm{HIGH})$

masa

MEMR

DIR

A19-A14

EM5

A2 TIMING

APPENDIX C

8088-1 INSTRUCTION SET

APPENDIX C

8088 INSTRUCTION SET

Mnemonic	Full Name
AAA	ASCII adjust for addition
AAD	ASCII adjust for division
AAM	ASCII adjust for multiplication
AAS	ASCII adjust for subtraction
ADC	Add with carry
ADD	Add
AND	AND
CALL	CALL
CBW	Convert byte to word
CLC	Clear carry flag
CLD	Clear direction flag
CLI	Clear interrupt flag
CMC	Complement carry flag
CMP	Compare
CMPS	Compare byte or word (of string)
CMPSB	Compare byte string
CMPSW	Compare word string
CWD	Convert word to double word
DAA	Decimal adjust for addition
DAS	Decimal adjust for subtraction
DEC	Decrement
DIV	Divide
ESC	Escape
HLT	Halt
IDIV	Integer divide
IMUL	Integer multiply
IN	Input byte or word
INC	Increment
INT	Interrupt
INTO	Interrupt on overflow
IRET	Interrupt return
JA	Jump on above
JAE	Jump on above or equal
JB	Jump on below
JBE	Jump on below or equal

Mnemonic Full Name

JC	Jump on carry
JCXC	Jump on CX zero
JE	Jump on equal
JG	Jump on greater
JGE	Jump on greater or equal
JL	Jump on less than
JLE	Jump on less than or equal
JMP	Jump
JNA	Jump on not above
JNAE	Jump on not above or equal
JNB	Jump on not below
JNBE	Jump on not below or equal
JNC	Jump on no carry
JNE	Jump on not equal
JNG	Jump on not greater
JNGE	Jump on not greater or equal
JNL	Jump on not less than
JNLE	Jump on not less than or equal
JNO	Jump on not overflow
JNP	Jump on not parity
JNS	Jump on not sign
JNZ	Jump on not zero
JO	Jump on overflow
JP	Jump on parity
JPE	Jump on parity even
JPO	Jump on parity odd
JS	Jump on sign
JZ	Jump on zero
LAHF	Load AH with flags
LDS	Load pointer into DS
LEA	Load effective address
LES	Load pointer into ES
LOCK	LOCK bus
LODS	Load byte or word (of string)
LODSB	Load byte (string)
LODSW	Load word (string)
LOOP	LOOP
LOOPE	LOOP while equal
JoOP	

Mnemonic Full Name
LOOPNE LOOP while not equal
LOOPNZ LOOP while not zero
LOOPZ LOOP while zero
MOV Move
MOVS Move byte or word (of string)
MOVSB Move byte (string)
MOVSW Move word (string)
MUL Multiply
NEG Negate
NOP No operation
NOT NOT
OR OR
OUT Output byte or word
POP POP
POPF POP flags
PUSH PUSH
PUSHF PUSH flags
RCL Rotate through carry left
RCR Rotate through carry right
REP Repeat
RET Return
ROL Rotate left
ROR Rotate right
SAHF Store AH into flags
SAL Shift arithmetic left
SAR Shift arithmetic right
SBB Subtract with borrow
SCAS Scan byte or word (of string)
SCASB Scan byte (string)
SCASW Scan word (string)
SHL Shift left
SHR Shift right
STC Set carry flag
STD Set direction flag
STI Set interrupt flag
STOS Store byte or word (of string)
STOSB Store byte (string)
STOSW Store word (string)
SUB Subtract
TEST TEST

Mnemonic Full Name

WAIT WAIT
XCHG Exchange
XLAT Translate
XOR Exclusive OR

APPENDIX

TURBO XT SCHEMATICS

Appendix D TURBO XT SCHEMATICS

appendix E

TURBO XT PART LISTS

APPENDIX E TURBO XT PART LIST

LASER Turbo XT main board component location list

DESTINATION	PART NUMBER	DESCRIPTION
$\begin{aligned} & \mathrm{U} 1, \mathrm{U} 8-\mathrm{U} 10, \\ & \mathrm{U} 22 \\ & \mathrm{U} 2 \end{aligned}$	27-0100-00-01	74 LS 245 (MOTOROLA)
	V27-0100-00-04	74LS245 (TEXAS)
	27-0554-01-01	MBL8088-1 (10MHZ) (FUJITSU)
	V27-0554-01-00	P8088-1 (10MHZ) (AMD)
AND	40-0008-00-03	40 PINS I.C. SOCKET (DOUBLE CONTACT)
	40-0008-00-00	40 PINS I.C. SOCKET (DOUBLE CONTACT)
U3	40-0008-00-03	40 PINS I.C. SOCKET (DOUBLE CONTACT)
	V40-0008-00-00	40 PINS I.C. SOCKET (DOUBLE CONTACT)
U4,U6,U18	27-0183-00-00	74LS373 (HITACHI)
	V27-0183-00-01	74 LS 373 (MOTOROLA)
	V27-0183-00-02	74LS373N (TEXAS)
U5,U12,U13	27-0160-00-00	74 LS 244 (MOTOROLA)
U7	27-0184-00-00	74LS08 (HITACHI)
	V27-0184-00-04	74LS08 (TEXAS)
	V27-0184-00-05	74LS08 (MOTOROLA)
U11	27-0037-01-00	HD74LS00N (HITACHI)
	V27-0037-01-03	74LS00 (MOTOROLA)
	V27-0037-01-06	74LS00 (MOTOROLA)
	V27-0037-01-07	74LS00N (TEXAS)
U14	27-0038-02-00	HD74LS04 (HITACHI)
	V27-0038-02-03	74LS04 (MOTOROLA)
	V27-0038-02-05	74LS04N
	V27-0038-02-06	74LS04 (SGS)
U15	27-0603-00-00	GATE ARRAY
		A2
U16	27-0602-01-00	GATE ARRAY
		A 1.1
	R27-0602-00-00	GATE ARRAY
		A1
U17	27-0488-00-00	8237A-5 DMA CONTROLLER (NEC)
	V27-0488-00-01	P8237A-5 DMA CONTROLLER (AMD)
	V27-0488-00-02	P8237A-5 DMA CONTROLLER (INTEL)
U19	27-0038-03-00	74S04 (TEXAS)
	V27-0038-03-03	HD74S04 (HITACHI)
U20	27-0672-00-03	MASK ROM R09864D-I96 (200NS)
	A27-0143-03-00	EPROM 2764-20 (200NS) (HITACHI)
	A27-0143-02-04	EPROM TMS2764-25 (250NS) (TEXAS)
AND	40-0007-00-04	28 PINS I.C. SOCKET

	V 40-0007-00-00	(DOUBLE CONTACT)
		28 PINS I.C. SOCKET
		(DOUBLE CONTACT)
	V40-0007-00-02	28 PINS I.C. SOCKET
		(DOUBLE CONTACT)
U21	40-0007-00-04	28 PINS I.C. SOCKET
		(DOUBLE CONTACT)
	V40-0007-00-00	28 PINS I.C. SOCKET
		(DOUBLE CONTACT)
	V40-0007-00-02	28 PINS I.C. SOCKET
		(DOUBLE CONTACT)
U23,U24	27-0451-00-00	74S244 (TEXAS)
U26-U29	40-0067-00-03	18 PINS I.C. SOCKET
		(DOUBLE CONTACT)
	A40-0067-01-00	18 PINS I.C. SOCKET
		(DOUBLE CONTACT)
U25,U30,	40-0082-01-01	16 PINS I.C. SOCKET
U31-U39,		(DOUBLE CONTACT)
U40-U48,	A40-0625-16-00	16 PINS I.C. SOCKET
U49-U57,		(DOUBLE CONTACT)
$\begin{aligned} & \text { U58-U66, } \\ & \text { U76-U84 } \end{aligned}$	V40-0082-01-00	16 PINS I.C. SOCKET
		(DOUBLE CONTACT)
U67-U75	27-0532-03-00	DRAM HM50256P-12
		(256K X 1) (HITACHI)
	V27-0532-03-01	DRAM MT1259-12
		(256K X 1) (MICRON)
	V27-0532-03-02	DRAM MCM6256AP 12
		(256K X 1) (MOTOROLA)
	V27-0532-03-03	DRAM TMM41256P-12
		(256K X 1) (TOSHIBA)
	V27-0532-03-04	DRAM KM41256-12
		(256K X 1) (SAMSUNG)
AND	40-0082-01-01	16 PINS I.C. SOCKET
		(DOUBLE CONTACT)
	V40-0082-01-00	16 PINS I.C. SOCKET
		(DOUBEL CONTACT)
	A40-0082-01-00	16 PINS I.C. SOCKET
		(DOUBLE CONTACT)
R1,R2	23-0472-10-02	RESISTOR 4.7K OHM
		1/4W +/-5\%
	V23-0472-10-00	RESISTOR 4.7K OHM
		1/4W +/-5\%
R3	23-0015-10-02	RESISTOR 100 K OHM
		$1 / 4 \mathrm{~W}+/-5 \%$
	V23-0015-10-00	RESISTOR 100 K OHM
		1/4W +/-5\%
R4,R12-R23	23-0270-10-02	RESISTOR 27 K OHM
		1/4W +/-5\%
R5,R6	(NOT USED)	
R7,R8	23-0013-10-02	RESISTOR 1K OHM
		$1 / 4 \mathrm{~W}+/-5 \%$
	V23-0013-10-00	RESISTOR 1K OHM
		$1 / 4 \mathrm{~W}+/-5 \%$

R9,R26	23-0561-10-02	RESISTOR 560 OHM $1 / 4 W+/-5 \%$
R10,R11	23-0221-10-02	RESISTOR 220 OHM $1 / 4 \mathrm{~W}+/-5 \%$
	V23-0221-10-00	RESISTOR 220 OHM $1 / 4 \mathrm{~W}+/-5 \%$
R24	23-0222-10-02	RESISTOR 2.2 K $\text { OHM } 1 / 4 \mathrm{~W}+/-5 \%$
	V23-0222-10-00	RESISTOR 2.2 K OHM $1 / 4 \mathrm{~W}+/-5 \%$
R25	23-0470-10-02	RESISTOR 47 OHM $1 / 4 \mathrm{~W}+/-5 \%$
	23-0470-10-00	RESISTOR 47 OHM $1 / 4 W+/-5 \%$
RA1	26-1103-08-01	RESISTOR NETWORK 10 K OHM X 8,9 PINS
	V26-1103-08-05	RESISTOR NETWORK 10 K OHM X 8,9 PINS
RA2,RA3,RA5	26-1472-08-13	RESISTOR NETWORK 4.7 K OHM X 8,9 PINS
	V26-1472-08-00	RESISTOR NETWORK 4.7K OHM X 8,9 PINS
	V26-1472-08-01	RESISTOR NETWORK 4.7K OHM X 8,9 PINS
	V26-1472-08-02	RESISTOR NETWORK 4.7K OHM X 8,9 PINS
	V.26-1472-08-05	RESISTOR NETWORK 4.7 K OHM X 8,9 PINS
RA4	26-1332-08-06	RESISTOR NETWORK 3.3K OHM X 8,9 PINS
	V26-1332-08-00	RESISTOR NETWORK 3.3K OHM X 8,9 PINS
XTAL 1	25-3015-00-00	CRYSTAL 14.31818 MHZ +/-30PPM
	V25-3015-00-04	CRYSTAL 14.31818 MHZ +/-30PPM
XTAL 2	25-3063-00-01	$\begin{aligned} & \text { CRYSTAL } 30 \mathrm{MHZ} \\ & +/-30 \mathrm{PPM} \end{aligned}$
	V25-3063-00-00	$\begin{aligned} & \text { CRYSTAL } 30 \mathrm{MHZ} \\ & +/-30 \mathrm{PPM} \end{aligned}$
Q1	20-0028-02-00	TRANSISTOR NA3IXJ
	A 20-0028-04-00	TRANSISTOR NA3IX I/J/H
L1-L4	25-1109-00-00	3 1/2T FERRITE BEAD CHOKE HOR.
	V25-1109-00-01	3 1/2T FERRITE BEAD CHOKE HOR.
L5-L7	25-1020-00-00	CHOKE COIL 3.3UH
	V25-1020-00-02	CHOKE COIL 3.3UH
L8-L13	(SHORTED IN	
D1-D17	21-0001-00-00	DIODE IN4148
SW1,SW2	42-0055-00-00	DIP SWITCH 8 POLES (SLIDE TYPE)
	V42-0055-00-04	DIP SWITCH 8 POLES (SLIDE TYPE)

C46	22-3470-26-00	$\begin{aligned} & \text { CER CAP 47PF } 50 \mathrm{~V} \\ & +/-10 \% \end{aligned}$
	A $22-3470-25-00$	CER CAP 47PF 50 V
		+/-5\%
	A 22-3470-26-01	$\begin{aligned} & \text { CER CAP } 47 \mathrm{PF} 50 \mathrm{~V} \\ & +/-10 \% \end{aligned}$
C56	22-3101-26-00	$\begin{aligned} & \text { CER CAP 100PF } 50 \mathrm{~V} \\ & +/-10 \% \end{aligned}$
C58,C77,C88	22-1101-11-03	ELEC CAP 100UF 10V $+/-10 \%$
$\mathrm{C} 89, \mathrm{C} 109$$\mathrm{C} 110, \mathrm{C} 131$		
C1, C6-C8,	(NOT USED)	
C9-C14,		
C15-C18,C35,		
C42, C55, 557,		
J1-J8	40-0472-00-00	PCB EDGE CONNECTOR 62 WAYS
J9	40-0459-05-00	DIN SOCKET (WITH SHIELDS) 5 PINS
J 10	40-0500-12-00	HEADER (POWER)
J 11	40-0118-00-01	CONNECTOR WAFER 2 PINS (RIGHT ANGLE)
	V40-0118-00-00	CONNECTOR WAFER 2 PINS (RIGHT ANGLE)
J 12	40-0120-00-01	CONNECTOR WAFER 5 PINS (RIGHT ANGLE)
	V40-0120-00-00	CONNECTOR WAFER 5 PINS (RIGHT ANGLE)
JP1-JPS	(SHORTED IN	
JP6	(NOT USED)	
JP7	40-02 15-00-01	WAFER 3 PINS
	V 40-0215-00-00	WAFER 3 PINS
AND	40-0342-00-00	2-CONTACT SHORT CIRCUIT SOCKET
	A 40-0342-01-00	SHUNT CONNECTOR
	A 40-0342-02-00	SHUNT CONNECTOR

IBM PC/XT is a registered trademark of International Business Machines Corp. INTEL is a registered trademark of Intel Corp.

LOTUS is a registered trademark of Lotus Development Corp.
DBASE III is a registered trademark of Ashton-Tate, Inc.
© 1987 VTCL MADE IN HONG KONG

[^0]: *Condition: Normal line
 max. load
 unless otherwise specified

