

DOC. NO.: MX36LEUI-OL-J0203A

マニュアル目次

MX36LE-UI	1
マニュアル目次	2
注意事項	ε
インストールの前に	s
製品概要	10
製品機能の特長	11
インストール手順の概要	14
マザーボード全体図	
ハードウェアのインストール	16
JP14 による CMOS データのクリア	17
CPU のインストール	18
JP23 による FSB/PCI クロックレシオの設定	
ジャンパーレス設計	24
CPU コア電圧の設定	25
CPU および筐体のファンコネクタ(ハードウェアモニタ機能付き)	25
DIMM ソケット	26
フロントパネルコネクタ	27
AC 電源自動リカバリー	A(0,00 28

ATX 電源コネクタ	29
ATX 電源コネクタIDE およびフロッピーのコネクタ	30
IrDA コネクタ	33
WOL (ウェイクオン LAN)	34
ISA 拡張スロット	36
オンボードでRealtek 10/100 Mbps LAN をサポート	37
JP13 LAN オン/オフ設定ジャンパー	38
JP28 キーボード/マウスウェイクアップのオン/オフジャンパー	39
PC99 カラーコード準拠後部パネル	40
COM2 コネクタ	41
第 2 USB ポートをサポート	42
CD オーディオコネクタ	43
モデムオーディオコネクタ	44
補助入力コネクタ	45
S/PDIF (Sony/Philips デジタルインタフェース)コネクタ(オプション)	46
フロントオーディオコネクタ	47
バッテリー不要および長寿命設計	48
ハードウェアモニタ機能	49
リセッタブルヒューズ	50

オンライン マニュアル

低 ESR コンデンサ	51
レイアウト (電磁波シールド)	52
ドライバおよびユーティリティ	53
Bonus CD ディスクからのオートランメニュー	54
Windows 95 のインストール	55
Windows 98 のインストール	56
Windows [®] 98 SE, Windows [®] ME, Windows [®] 2000 のインストール	57
VIA 4 in 1 ドライバのインストール	58
オンボードサウンドドライバのインストール	59
オンボード AGP ドライバのインストール	60
LAN ドライバのインストール	61
ハードウェアモニタ ユーティリティのインストール	65
ACPI ハードディスクサスペンド	66
ACPI サスペンドトゥーRAM (STR)	71
AWARD BIOS	73
BIOS 機能の説明について	74
Award™ BIOS セットアッププログラムの使用方法	75
BIOS セットアップの起動方法	77
BIOS のアップグレード	78

オーパークロック	80
VGA カードおよびハードディスク	81
用語解説	82
AC97	82
ACPI (アドバンスド コンフィギュレーション&パワー インタフェース)	82
AGP (アクセラレーテッドグラフィックポート)	82
AMR (オーディオ/モデムライザー)	83
AOpen Bonus Pack CD	83
APM (アドバンスドパワーマネジメント)	83
ATA (AT アタッチメント)	83
ATA/66	83
ATA/100	84
BIOS (基本入出力システム)	84
Bus Master IDE (DMA モード)	84
CNR (コミュニケーション及びネットワーキングライザー)	84
CODEC (符号化および復号化)	85
DIMM (デュアルインライン メモリモジュール)	85
ECC (エラーチェックおよび訂正)	85
EDO(拡張データ出力)メモリ	85

EEPROM (電子式消去可能プログラマブル ROM)	86
EPROM (消去可能プログラマブル ROM)	86
EV6 バス	86
FCC DoC (Declaration of Conformity)	86
FC-PGA (フリップチップ-ピングリッド配列)	87
フラッシュ ROM	87
FSB (フロントサイドバス)クロック	87
l ² C Bus	87
IEEE 1394	88
パリティービット	88
PBSRAM(パイプラインドバースト SRAM)	88
PC-100 DIMM	89
PC-133 DIMM	89
PCI (ペリフェラルコンポーネントインタフェース)バス	89
PDF フォーマット	89
PnP(プラグアンドプレイ)	89
POST (電源投入時の自己診断)	90
RDRAM (Rambus DRAM)	90
RIMM (Rambus インラインメモリモジュール)	90

オンライン マニュアル

SDRAM (同期 DRAM)	90
シャドウ E²PROM	91
SIMM (シングルインラインメモリモジュール)	91
SMBus (システムマネジメントバス)	91
SPD (既存シリアル検出)	91
Ultra DMA	92
USB (ユニバーサルシリアルバス)	92
VCM(バーチャルチャンネルメモリ)	93
ZIP ファイル	93
トラブルシューティング	94
テクニカルサポート	98
パーツ番号およびシリアル番号	100
製品の登録	102

注意事項

Adobe、Adobe のロゴ、Acrobat は Adobe Systems Inc.の商標です。

AMD、AMD のロゴ、Athlon および Duron は Advanced Micro Devices, Inc.の商標です。

Intel、Intelのロゴ、Intel Celeron, PentiumII, PentiumIII は Intel Corporation.の商標です。

Microsoft、Windows、Windowsのロゴは、米国または他国の Microsoft Corporation の登録商標および商標です。

このマニュアル中の製品およびブランド名は全て、識別を目的とするために使用されており、各社の登録商標です。

このマニュアル中の製品仕様および情報は事前の通知なしに変更されることがあります。この出版物の改訂、必要な変更をする権限は AOpen にあります。製品およびソフトウェアを含めた、このマニュアルでの誤りや不正確な記述については AOpen は責任を負いかねます。

この出版物は著作権法により保護されています。全権留保。

Aopen Corp.の書面による許可がない限り、この文書の一部をいかなる形式や方法でも、データベースや記憶装置への記憶などでも複製はできません。

Copyright[©] 1996-2002, AOpen Inc. All Rights Reserved.

インストールの前に

このオンラインマニュアルでは製品のインストール方法が紹介されています。有用な情報は後半の章に記載されています。以後のアップグレードやシステム設定変更に備え、このマニュアルは正しく保管しておいてください。このオンラインマニュアルはPDFフォーマットで記述されていますから、オンライン表示には Adobe Acrobat Reader 4.0 を使用します。このソフトはBonus CD ディスクにも収録されていますし、Adobe ウェブサイトから無料ダウンロードもできます。


当オンラインマニュアルは画面上で表示するよう最適化されていますが、印刷出力も可能です。この場合、紙サイズは A4 を指定し、1 枚に 2 ページを印刷するようにします。この設定は ファイル> ページ設定を選び、プリンタドライバからの指示に従います。

皆様の地球資源保護への関心に感謝します。

製品概要

この度は AOpen MX36LE-UI をお買い上げいただき誠にありがとうございます。当製品はVIA Apollo PLE133 チップセット採用、マイクロ ATX 規格の Intel® Socket 370 マザーボード(以下、M/B)です。高性能チップセット内蔵の M/B である MX36LE-UI は Intel® Socket 370 シリーズの Pentium III™ および Celeron™ プロセッサを 66/100/133MHz フロントサイドバス (FSB) と共にサポートしています。ユーザーの必要に応じて 8, 16, 32, 64, 128, 256 および 512MB の SDRAM DIMM モジュールが最大 1.0 GB までマザーボードに搭載可能です。オンボード IDE コントローラは UItraATA 100 33/66/100 モードをサポート、最大 100 100 MB/s で転送できます。加えてオンボードの AC97 CODEC コントローラにより、高性能かつすばらしいサラウンドステレオサウンドをお楽しみいただけます。 MX36LE-UI にはオンボード VGA、オンボード LAN、ISA スロット 100 1 個および USB 100 4 ポートを装備しています。それでは AOpen MX36LE-UI の全機能をご堪能ください。

製品機能の特長

CPU

Socket 370 規格用の 66/100/133MHz フロントサイドバスを使用、Intel® Socket 370 Pentium® III Tualatin/Celeron™ 533MHz~1.2GHz+および VIA C3 800MHz+をサポートしています。

チップセット

VIA Apollo PLE133 は、66/100/133MHz CPU FSB クロックおよび 64 ビット Socket 370 CPU 採用の本体システムに適した、高性能でコストパフォーマンスに優れた省電力のチップセットです。VIA Apollo PLE133 には Trident Blade 3D AGP グラフィックアクセラレータが 1 つの BGA パッケージに統合されており、システム要求の高いソフトウェアやインターネットマルチメディアアプリケーションにおいて、総括的なドライバサポートを含めた優れた性能を提供します。VIA Apollo PLE133 により、CPU、DRAM、 AGP バス、PCI バス相互間の優れたデータ転送性能が発揮されます。

拡張スロット

拡張スロットには 3 個の 32 ビット/ 33MHz PCI および ISA スロット 1 個があります。PCI ローカルバスのスループットは最大 132MB/s に達します。ISA (Industry Standard Architecture)によりマザーボード回路と拡張スロットおよび関連デバイス間での 16 ビットデータ転送が可能です。

メモリ

MX36LE-UI は PC100 および PC133 SDRAMをサポート、66/100/133MHz での DRAM-データバッファ間のゼロウェイトモードバースト転送が可能です。DIMM スロットの 2 個のバンクには任意の個数および組み合わせの 1M/2M/4M/8M/16M の DRAM が搭載可能です。DRAM コントローラは、ホスト CPU バスクロック (66/100/133MHz)または CPU バスへの擬似同期モードで動作できます。

オンボード Trident Blade3D グラフィックスエンジン

当マザーボードでは、優れた AGP グラフィックス性能を有する Trident Blade3D グラフィックスエンジンを採用、バスの最も効率的な使用を目的とした AGP 2.0 規格に完全準拠して、1X/2X/4X モード転送、SBA (サイドバンドアドレッシング)、フラッシュ/フェンス命令、パイプライン要求を皆サポートしています。AGP 4X 仕様によりビデオ表示用のより高速な新機能が提供されています。AGP 4X ビデオカードは最大 1066MB/s のビデオデータ転送速度を実現します。

Ultra ATA 33/66/100 拡張 IDE

当マザーボードにはオンボード PCI Bus Master IDE コントローラのコネクタ 2 個が装備され、2 チャンネルで 4 台の IDE 装置が使用可能です。サポートされるのは Ultra DMA 33/66/100、PIO モード 3 および 4 さらに Bus Master IDE DMA モード 4、拡張 IDE 機器です。

オンボード AC97 サウンド

当マザーボードは AC97 サウンドチップを採用しています。オンボードオーディオにはサウンド録音・再生システムが完備されています。

パワーマネジメント/プラグアンドプレイ

米国環境保護局(EPA)の Energy Star 計画の省電力規格をクリアするパワーマネジメント機能をサポートしています。さらにプラグアンドプレイ機能により、設定時のトラブルを減少させ、システムがよりユーザーフレンドリーになっています。

ハードウェアモニタ機能

CPU や筐体ファンの状態、CPU 温度や電圧の監視や警告がオンボードのハードウェアモニタモジュールおよびAOpen ハードウェアモニタユーティリティから使用可能です。

拡張 ACPI

Windows[®] 95/98/ME/NT/2000 シリーズ互換の<u>ACPI</u>規格に完全準拠し、ソフト・オフ、STR (サスペンドトゥーRAM, S3)、STD (ディスクサスペンド, S4)、WOL (ウェイクオン LAN)機能をサポートしています。

スーパーマルチ I/O

UART 互換高速シリアルポート 2 個、EPP および ECP 互換のパラレルポート 1 個が装備されています。UART2 は COM2 から 赤外線モジュールに接続してワイヤレス転送にも使用可能です。

インストール手順の概要

このページにはシステムをインストールする簡単な手順が説明されています。以下のステップに従います。

- 1. CPUおよびファンのインストール
- 2. システムメモリ (DIMM)のインストール
- 3. フロントパネルケーブルの接続
- 4. IDE およびフロッピーケーブルの接続
- **5.** ATX 電源ケーブルの接続
- 6. 後部パネルケーブルの接続
- 7. 電源の投入および BIOS 設定デフォルト値のロード
- 8. CPU クロックの設定
- 9. 再起動
- **10.** OS (Windows 98 等)のインストール
- 11. ドライバおよびユーティリティのインストール

MODEM-CN コネクタ(赤) フロントオーディオコネクタ

CD-IN コネクタ(黒)

S/PDIFコネクタ (オ

オンボード AC97 CODEC

AUX-IN コネクタ(緑)

ISA 拡張スロット

32 ビット PCI スロット 3 個 -

COM2 コネクタ

第 2 USB ポート JP13 LAN オン/オフ 設定ジャンパー

> WOL コネクタ IrDA コネクタ

JP14 CMOS クリアジャンパー フロントパネルコネクタ

FAN2 コネクタ

マザーボード全体図

PC99 カラー後部コネクタ

LAN チップ

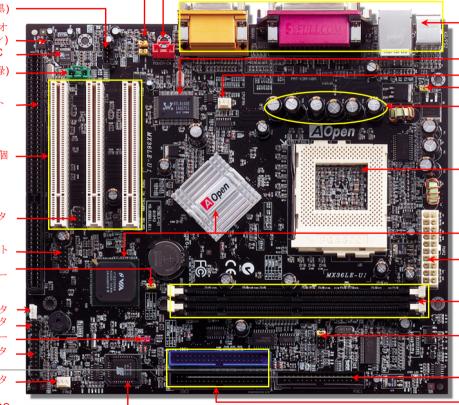
_ CPU ファンコネクタ _ JP28 キーボード/マウス

祇 ĖSR コンデンサ

370 ピン CPU ソケット 100/133MHz FSB サポートで PentiumIII Tualatin / Celeron 533MHz~1.2GHz+および VIA C3 800MHz+対応

VIA Apollo PLE133 チップセット、 _Trident Blade3D グラフィック エンジン搭載

ATX 電源コネクタ


PC-100/133 DIMM ソケット 2 個で最大 1.0GB 搭載可能

JP23 CPU FSB 設定ジャンパー

A Open

FDD コネクタ

- Ultra ATA/100 IDE コネクタ 2 個

4M ビットフラッシュ EEPROM BIOS

ハードウェアのインストール

この章ではマザーボードのジャンパー、コネクタ、ハードウェアデバイスについて説明されています。

注意: 静電放電(ESD) が起きると、プロセッサ、ディスクドライブ、拡張ボード、その他のデバイスに損傷を与える場合があります。各デバイスのインストール作業を行う前には常に、以下に記した注意事項を気を付けるようにして下さい。

- 1. 各コンポーネントは、そのインストール直前まで静電保護用のパッケージから取り 出さないで下さい。
- 2. コンポーネントを扱う際には、あらかじめアース用のリスト・ストラップを手首に はめて、コードの先はシステム・ユニットの金属部分に固定して下さい。リスト・ ストラップがない場合は、静電放電を防ぐ必要のある作業中は常に、身体がシステ ム・ユニットに接触しているようにして下さい。

1番ピン

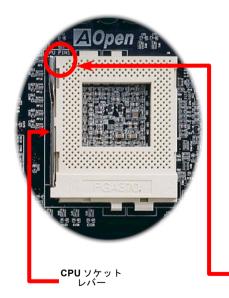
JP14 による CMOS データのクリア

CMOS をクリアすると、システムをデフォルト設定値に戻せます。以下の方法で CMOS をクリアします。

- 1. システムをオフにし、AC コードを抜きます。
- 2. コネクタ PWR2 から ATX 電源ケーブルを外します。
- 3. JP14 の位置を確認し、2-3 番ピンを数秒間ショートさせます。
- 4. JP14 を通常動作時の 1-2 ピン接続に戻します。
- 5. ATX 電源ケーブルをコネクタ PWR2 に戻します。

ヒント: CMOS クリアはどんな時に必要?

- 1. オーバークロック時の起動失敗...
- 2. パスワードを忘れた...
- 3. トラブルシューティング...

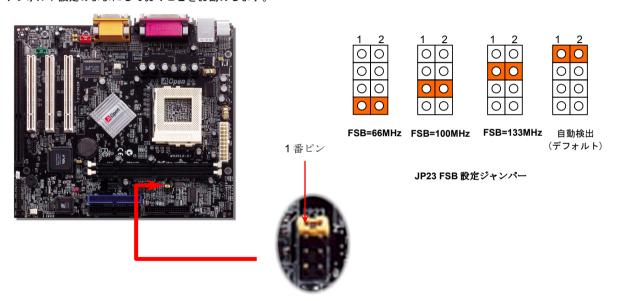


正常動作時 (デフォルト) CMOS クリア時

CPU のインストール

このマザーボードは Intel® Pentium III Tualatin / Celeron および VIA C3 Socket 370 CPU をサポートしています。CPU をソケットに差すときは CPU の方向に注意してください。

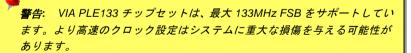
- **1.** CPU ソケットレバーを 90 度引き起こします。
- **2.** ソケットの1番ピンの位置および CPU 上部の面取り部を確かめます。1番ピンおよび面取り部を合わせます。この方向で CPU をソケットに差します。
- **3.** CPU ソケットレバーを水平に戻すと、CPU のインストールは完了です。


ご注意: CPU ソケットの 1 番ピンと CPU の面取り部を合わせないと、CPU に損傷を与えます。

CPUの1番ピン ■および面取り部

JP23 による FSB/PCI クロックレシオの設定

このジャンパースイッチにより、PCIおよび<u>FSB</u>クロックの関係を設定します。一般的には、オーバークロックを行うのでない限り、デフォルト設定のままにしておくことをお勧めします。



ıγl

PCI クロック= CPU FSB クロック/ クロックレシオ

クロック レシオ	CPU (ホスト)	PCI	AGP
2X	66	33	PCI x2またはx3
2X (オーバークロック)	75	37.5	PCI x2またはx3
3X	100	33	PCI x2、x3またはx4
3X (オーバークロック)	112	37.3	PCI x2、x3またはx4
4X	133	33	PCI x3またはx4

CPU クロックの設定

BIOS Setup > Frequency/Voltage Control > CPU Host Clock (CPU/PCI)

コアクロック = CPU FSB クロック * CPU レシオ

CPUレシオ	3x, 3.5x, 4x, 4.5x,16x	
CPU FSB	66.8, 75, 83.3, 100, 103, 105, 110, 112, 115, 120, 124, 133, 150MHz	

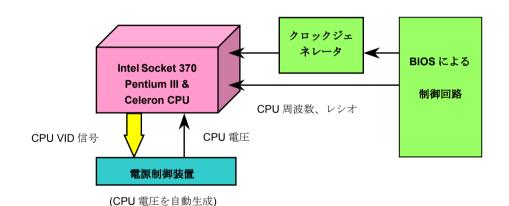
警告: VIA PLE133 チップセットは、最大 133MHz FSB をサポートしています。より高速のクロック設定はシステムに重大な損傷を与える可能性があります。

使用可能な CPU クロック

コアクロック = CPU FSBクロック * CPU レシオ

ヒント: オーバークロック時にシステムが起動時に反応しなくなったり起動不能になった場合は、<Home>キーを押すだけでデフォルト設定に復帰します。

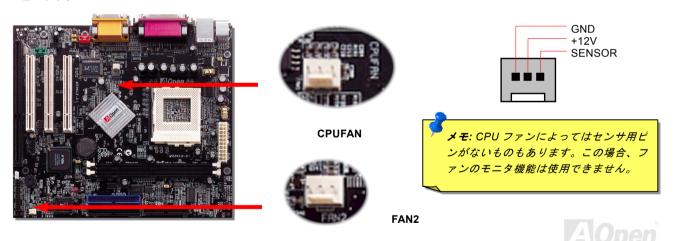
CPU	CPUコア クロック	FSBクロック	レシオ
Celeron 533	533MHz	66MHz	8x
Celeron 566	566MHz	66MHz	8.5x
Celeron 600	600MHz	66MHz	9x
Celeron 667	667MHz	66MHz	10x
Celeron 700	700MHz	66MHz	10.5x
Celeron 733	733MHz	66MHz	11x
Celeron 766	766MHz	66MHz	11.5x
Celeron 800	800MHz	100MHz	8x
Celeron 900	900MHz	100MHz	9x
Celeron 1G	1GHz	100MHz	10x
Celeron 1.1G	1.1GHz	100MHz	11x
Celeron 1.2G	1.2GHz	100MHz	12x
Pentium III 800E	800MHz	100MHz	8x


Pentium III 850E	850MHz	100MHz	8.5x
Pentium III 533EB	533MHz	133MHz	4x
Pentium III 600EB	600MHz	133MHz	4.5x
Pentium III 667EB	667MHz	133MHz	5x
Pentium III 733EB	733MHz	133MHz	5.5
Pentium III 800EB	800MHz	133MHz	6x
Pentium III 866EB	866MHz	133MHz	6.5
Pentium III 933EB	933MHz	133MHz	7x
Pentium III 1G	1000MHz	133MHz	7.5x
Pentium III 1.13G	1.13GHz	133MHz	8.5x
Pentium III 1.2G	1.2GHz	133MHz	9x
Pentium III 1.3G	1.3GHz	133MHz	10x

警告: VIA PLE133 チップセットは、最大 133MHz FSB をサポートしています。より高速のクロック設定 はシステムに重大な損傷を与える可能性があります。

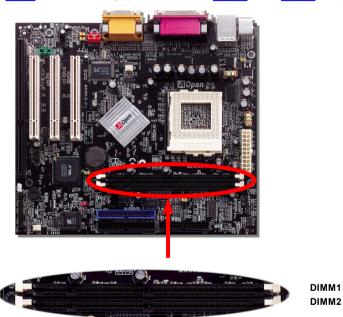
ジャンパーレス設計

CPU VID 信号およびSMbusクロックジェネレーターにより、CPU 電圧の自動検出が可能となり、ユーザーはBIOS セットアップを通して CPU クロックを設定できますから、ジャンパーやスイッチ類は不要となります。CPU の正確な情報は、EEPROMに保存されます。これで Pentium 中心のジャンパーレス設計に伴う不便は解消されます。CMOS バッテリー切れに伴う、CPU 電圧検出エラーの心配やシステムケースを開ける手間もなくなります。



CPU コア電圧の設定

このマザーボードは CPU VID 機能をサポートしています。CPU コア電圧は自動検出・設定されます。それで CPU コア電圧の設定は不要です。

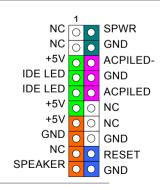

CPU および筐体のファンコネクタ(ハードウェアモニタ機能付き)

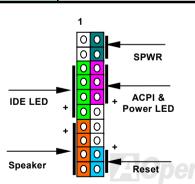
CPU ファンのケーブルは 3-ピンの CPU FAN コネクタに差します。筐体ファンを使用される場合は、ケーブルを FAN2 コネクタ に差します。

DIMM ソケット

このマザーボードには 168 ピン $\underline{\text{DIMM}}$ ソケットが 2 個装備されているので $\underline{\text{PC}100}$ または $\underline{\text{PC}133}$ メモリが最大 1.0GB 搭載可能です。

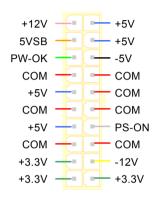
フロントパネルコネクタ




電源 LED、EMPI、スピーカー、電源、リセットスイッチのコネクタをそれぞれ 対応するピンに差します。BIOS セットアップで"Suspend Mode" の項目をオン にした場合は、ACPI および電源の LED がサスペンドモード中に点滅します。

お持ちの ATX の筐体で電源スイッチのケーブルを確認します。これは前部パネルから出ている 2-ピンメスコネクタです。このコネクタを SPWR と記号の付いたソフトウェア電源スイッチコネクタに接続します。

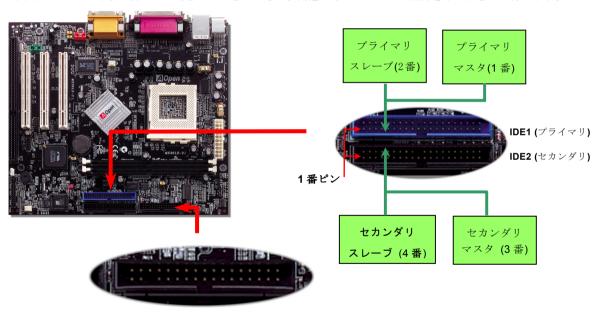
サスペンドモード	ACPI LED
パワーオンサスペンド (S1)	毎秒点滅
サスペンドトゥーRAM (S3)またはハードディスク サスペンド (S4)	LED は消灯


AC 電源自動リカバリー

従来の ATX システムでは AC 電源が切断された場合、電源オフ状態からの再開となります。この設計では、無停電電源を使用しないネットワークサーバーやワークステーションにとって常に電源オン状態を維持することが要求され、不都合です。この問題を解決するため、当マザーボードには電源自動リカバリー機能が装備されています。

ATX 電源コネクタ

ATX 供給電源には下図のように 20 ピンのコネクタが使用されています。差し込む際は向きにご注意ください。



IDE およびフロッピーのコネクタ

34 ピンフロッピーケーブルおよび 40 ピン IDE ケーブルをフロッピーコネクタ FDD および IDE コネクタに接続します。**青いコネクタ**が IDE1 です。1 番ピンの向きにご注意ください。間違えるとシステムに支障を来たす恐れがあります。

IDE1 はプライマリチャネル、IDE2 はセカンダリチャネルとも呼ばれます。各チャネルは2個の IDE デバイスが接続できるので、合計4個のデバイスが使用可能です。これらを協調させるには、各チャネル上の2個のデバイスをマスタおよびスレーブモードに指定する必要があります。ハードディスクまたはCDROMのいずれでも接続可能です。モードがマスタかスレーブかはIDE デバイスのジャンパー設定に依存しますから、接続するハードディスクまたはCDROMのマニュアルをご覧ください。

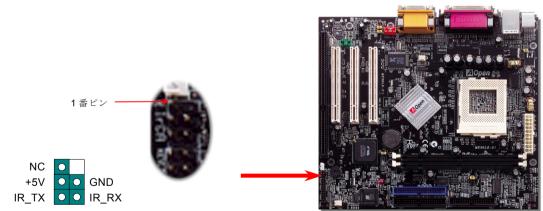
•

誉告: IDE ケーブルの規格は最大 46cm (18 インチ)です。ご使用のケーブルの長さがこれを超えないようご注意ください。

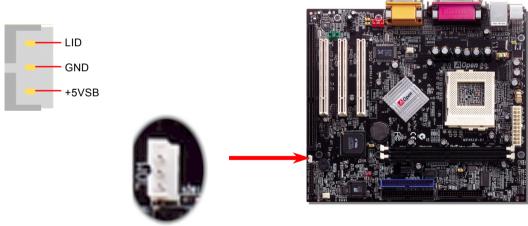
ヒント: 信号の品質確保のため、一番離れた側の端子をマスタとし、提案された順序にしたがって新たにデバイスをインストールしてください。上図をご参考ください。

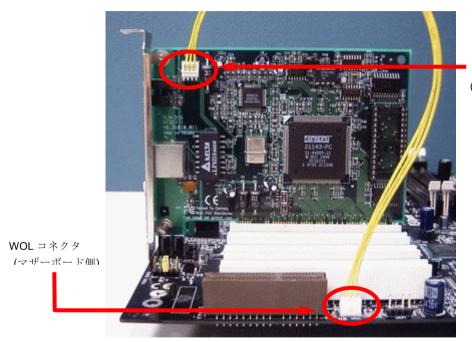
このマザーボードはATA33, ATA66およびATA100の IDE 機器をサポートしています。下表には IDE PIO 転送速度および DMA モードが列記されています。IDE バスは 16 ビットで、各転送が 2 バイト単位で行われることを意味します。

モード	クロック周期	クロックカウ	サイクル時間	データ転送速度
		ント		
PIO mode 0	30ns	20	600ns	(1/600ns) x 2バイト= 3.3MB/s
PIO mode 1	30ns	13	383ns	(1/383ns) x 2バイト= 5.2MB/s
PIO mode 2	30ns	8	240ns	(1/240ns) x 2バイト= 8.3MB/s
PIO mode 3	30ns	6	180ns	(1/180ns) x 2バイト= 11.1MB/s
PIO mode 4	30ns	4	120ns	(1/120ns) x 2バイト= 16.6MB/s
DMA mode 0	30ns	16	480ns	(1/480ns) x 2バイト= 4.16MB/s
DMA mode 1	30ns	5	150ns	(1/150ns) x 2バイト= 13.3MB/s
DMA mode 2	30ns	4	120ns	(1/120ns) x 2バイト= 16.6MB/s
ATA 33	30ns	4	120ns	(1/120ns) x 2バイトx2 =33MB/s
ATA 66	30ns	2	60ns	(1/60ns) x 2バイトx2 = 66MB/s
ATA 100	20ns	2	40ns	(1/40ns) x 2バイトx2 =100MB/s


ヒント: Ultra DMA 66/100 ハードディスクの機能を最大限引き出すには、Ultra DMA 66/100 専用 **80-芯線IDE ケーブル**が必要です。

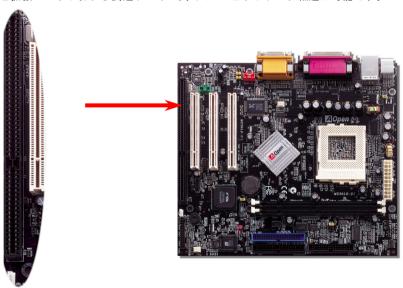
IrDA コネクタ


IrDA コネクタはワイヤレス赤外線モジュールの設定後、Laplink や Windows95 のケーブル接続等のアプリケーションソフトウェアと併用することで、ユーザーのラップトップ、ノートブック、PDA デバイス、プリンタ間でのデータ通信をサポートします。このコネクタは HPSIR (115.2Kbps, 2m 以内)および ASK-IR (56Kbps)をサポートします。


IrDA コネクタに赤外線モジュールを接続し、BIOS セットアップの<u>UART2 Mode</u>で正しく設定します。IrDA コネクタを差す際は 方向にご注意ください。

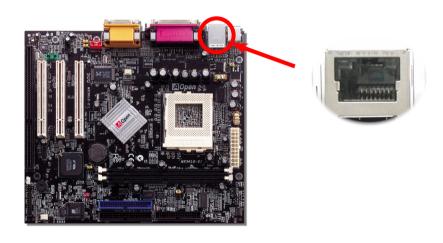
WOL (ウェイクオン LAN)

この機能はウェイクオンモデムと酷似していますが、これはローカルエリアネットワークを対象としています。LAN ウェイクアップ機能を使用するには、この機能をサポートするネットワークカードが必要で、LAN カードからのケーブルをマザーボードのWOL コネクタに接続します。システム判別情報(おそらく IP アドレス)はネットワークカードに保存され、イーサネットには多くのトラフィックが存在するため、システムをウェイクアップさせる方法は ADM 等のネットワークソフトウェアを使用することが必要でしょう。この機能を使用するには、LAN カードへの ATX からのスタンバイ電流が最低 600mA 必要であることにご注意ください。

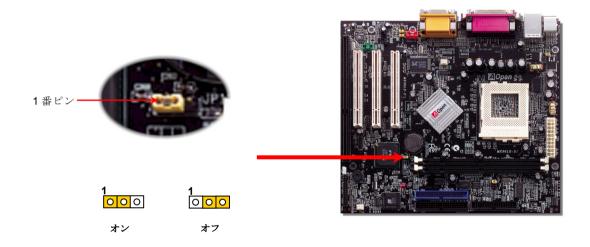

WOL コネクタ (イーサネットカード

ご注意: この図は参考用です。お買い上げのマザーボードとは異なる場合があります。

ISA 拡張スロット


ISA (Industry Standard Architecture)は IBM AT マザーボードの有するバス(コンピュータ内の相互転送)の標準構造です。これによりマザーボード回路と拡張スロットおよび関連デバイス間での 16 ビットデータ転送が可能です。

オンボードで Realtek 10/100 Mbps LAN をサポート

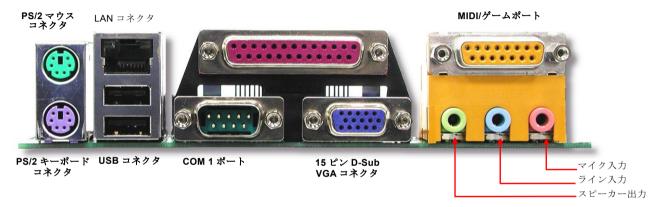

このマザーボードには高速 Ethernet コントローラがオンチップ装備されています。高度統合化プラットホーム LAN 接続デバイスであるオンボードの Realtek 10/100 LAN により、オフィスや自宅での 10/100M bps イーサネットがサポートされています。 イーサネット用コネクタは USB コネクタ上部に位置します。

JP13 LAN オン/オフ設定ジャンパー

このジャンパーの黄色いキャップの位置を変えることでオンボード LAN 機能をオン・オフできます。

JP28 キーボード/マウスウェイクアップのオン/オフジャンパー

このマザーボードはキーボード/マウスウェイクアップ機能を備えています。サスペンドモードからキーボードやマウス操作でシステムをレジュームさせる機能のオン・オフは JP28 で設定します。工場デフォルト設定は"オフ"(1-2)で、ジャンパーを 2-3 にセットするとこの機能が有効になります。



PC99 カラーコード準拠後部パネル

オンボードの I/O デバイスは PS/2 キーボード、PS/2 マウス、COM1 と 15-ピン D-Sub コネクタ、プリンタ、<u>4 個の USB</u>、AC97 サウンド、ゲームポートです。下図は筐体の後部パネルから見た状態です。

PS/2 キーボード: PS/2 プラグ使用の標準キーボード用

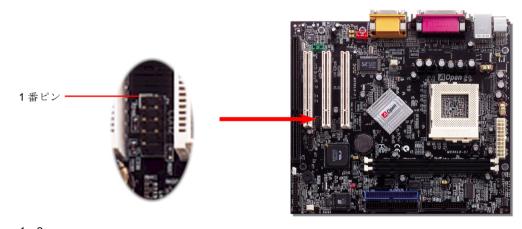
PS/2 マウス: PS/2 プラグ使用の PC-マウス用

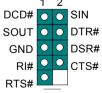
USB ポート: USB 機器の接続用

パラレルポート: SPP/ECP/EPP プリンタ接続用.

COM1 ポート: ポインティングデバイス、モデム、その他のシリアル装置接続用

VGA コネクタ: PC モニタ接続用

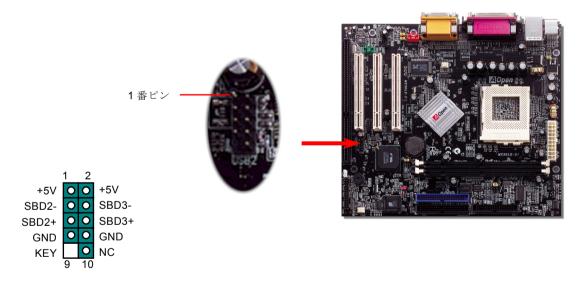

スピーカー出力: 外部スピーカー、イヤホン、アンプへ **ライン入力:** CD/テーププレーヤー等からの信号源から


マイク入力: マイクロホンから

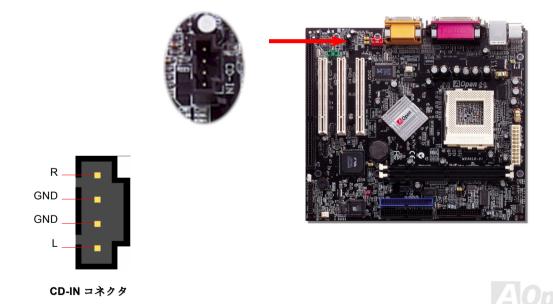
ヒント:このマザーボードには USB および キーボードポートの過電流防止機能が備わ っています。

COM2 コネクタ

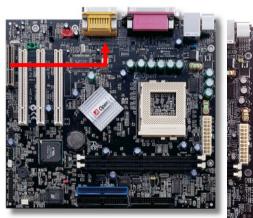
このマザーボードは2つのシリアルポートをサポートしています。そのうちの1つは後部パネルコネクタに、残りは中央左よりのPCIスロット間に位置しています。適当なケーブルによりここからケースの後部パネルに接続できます。

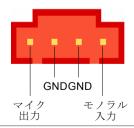


第2USBポートをサポート

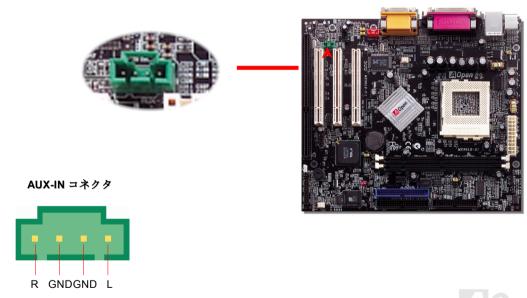

このマザーボードは 4 つの USB ポートをサポートしています。そのうちの 2 つは後部パネルに、残り 2 つはマザーボードの左側に位置しています。適当なケーブルによりここからフロントパネルに接続できます。

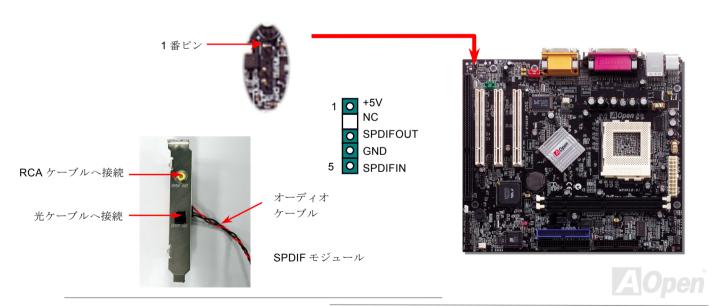
CD オーディオコネクタ


この**黒い**コネクタは CDROM または DVD ドライブからの CD オーディオケーブルをオンボードサウンドに接続するのに使用します。

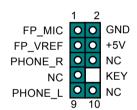

モデムオーディオコネクタ

このコネクタは内蔵モデムカードからのモノラル入力/マイク出力ケーブルをオンボードサウンド回路に接続するのに用います。 1-2 ピンは**モノラル入力**、3-4 ピンは**マイク出力**です。参考までに、この種のコネクタにはまだ規格はないものの、内蔵モデムカードによってはこのコネクタを採用しています。


MODEM-CN コネクタ


補助入力コネクタ

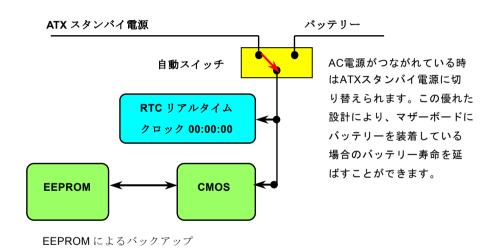
この縁のコネクタはMPEGカードからのMPEGオーディオケーブルをオンボードサウンドに接続するのに使用します。


S/PDIF (Sony/Philips デジタルインタフェース)コネクタ(オプション)

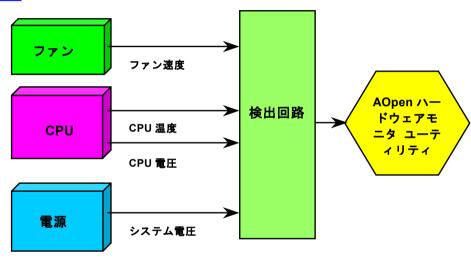
S/PDIF (Sony/Philips デジタルインタフェース)は最新のオーディオ転送ファイル形式で、アナログに取って代わるデジタルオーディオを光ファイバー経由で楽しめます。図示されているように通常 S/PDIF 出力は 2 つあり、一方は大部分の消費型オーディオ製品に対応する RCA コネクタ、他方はより高品質のオーディオに対応する光コネクタです。専用オーディオケーブルにより、SPDIF コネクタと別の S/PDIF デジタル出力をサポートする S/PDIF オーディオモジュールを接続します。ただし、S/PDIF デジタル出力の長所を最大限活かすにはモジュールの SPDIF 出力を SPDIF デジタル入力対応スピーカーに接続する必要があります。

フロントオーディオコネクタ

筐体のフロントパネルにオーディオポートが設定されている場合、オンボードオーディオからこのコネクタを通してフロントパネルに接続できます。なお、ケーブルを接続する前にフロントパネルオーディオコネクタからジャンパーキャップを外してください。フロントパネルにオーディオポートがない場合はこの黄色いキャップを外さないでください。



バッテリー不要および長寿命設計


このマザーボードにはフラッシュROMと特殊回路が搭載され、これにより現在のCPUとCMOSセットアップ設定をバッテリ無しで保存できます。RTC(リアルタイムクロック)は電源コードがつながれている間動作し続けます。何らかの理由でCMOSデータが破壊された場合、フラッシュROMからCMOS設定を再度読み込むだけでシステムは元の状態に復帰します。

AOpen

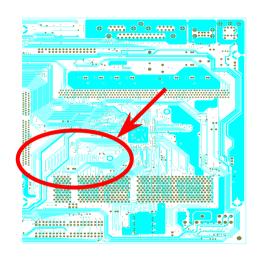
ハードウェアモニタ機能

このマザーボードにはハードウェアモニタ機能が備わっています。システムを起動させた時から、この巧妙な設計により、システム動作電圧、ファンの状態、CPU 温度をモニターします。システムの状態のいずれかが問題のある場合、AOpen ハードウェアモニタ ユーティリティを通して警告メッセージが出されます。

リセッタブルヒューズ

従来のマザーボードではキーボードや<u>USB</u>ポートの過電流または短絡防止にヒューズが使用されていました。これらヒューズはボードにハンダ付けされているので、故障した際、 (マザーボードを保護する措置を取っても)ユーザーはこれを交換はできず、マザーボードは故障したままにされました。

リセッタブルヒューズは高価ですが、ヒューズの保護機能により、マザーボードは正常動作に復帰できます。


低 ESR コンデンサ

高周波数動作中の低 ESR コンデンサ (低等価直列抵抗付き)の性質は CPU パワーの安定性の鍵を握ります。これらのコンデンサ の設置場所は 1 つのノウハウであり、経験と精密な計算が要求されます。

レイアウト (電磁波シールド)

注意: この図は参考用で、お買い上げのマザーボードと同一であるとは限りません。

高周波時の操作、特にオーバークロックでは、チップセットと CPU が安定動作をするためその配置方法が重要な要素となります。このマザーボードでは"電磁波シールド"と呼ばれる AOpen 独自の設計が採用されています。マザーボードの主要な領域を、動作時の各周波数が同じか類似している範囲に区分けすることで、互いの動作やモードのクロストークや干渉が生じにくいようになっています。トレース長および経路は注意深く計算されています。例えばクロックのトレースは同一長となるよう(必ずしも最短ではない)にすることで、クロックスキューは数ピコ秒(1/10¹² Sec)以内に抑えられています。

ドライバおよびユーティリティ

AOpen Bonus CD ディスク にはマザーボードのドライバとユーティリティが収録されています。. システム起動にこれら全てをインストールする必要はありません。ただし、ハードウェアのインストール後、ドライバやユーティリティのインストール以前に、まず Windows 98 等のオペレーションシステムをインストールすることが必要です。ご使用になるオペレーションシステムのインストールガイドをご覧ください。


9

メモ: 以下の手順に従って <u>Windows 95</u> または <u>Windows 98</u>をインストールしてください。

Bonus CD ディスクからのオートランメニュー

ユーザーは Bonus CD ディスクのオートラン機能を利用できます。ユーティリティとドライバを指定し、型式名を選んでください。

Windows 95 のインストール

- 1. Windows 95 OSR2 v2.1, バージョン 1212 または 1214 および USB サポートをインストールします。または別個に USBSUPP.EXE をインストールします。
- 2. VIA 4 in 1 ドライバをインストールします。内容は VIA AGP Vxd ドライバ、VIA ATAPI ベンダーサポートドライバおよび VIA レジストリ(INF)プログラムです。
- 3. 最後に他のアドオンカードおよび対応するドライバをインストールします。

Windows 98 のインストール

- 1. BIOS セットアップから BIOS Setup > Advanced Chipset Features > OnChip USBから USB Controller を Enabled (オン) にして、BIOS が IRQ 割り当てを完全にコントロールできるようにします。
- 2. Window 98 をインストールします。
- 3. <u>VIA 4 in 1 ドライバ</u>をインストールします。内容は VIA AGP Vxd ドライバ、VIA ATAPI ベンダーサポートドライバおよび VIA レジストリ(INF)プログラムです。
- 4. 最後に他のアドオンカードおよび対応するドライバをインストールします。

Windows® 98 SE, Windows® ME, Windows®2000 のインストール

Windows® 98 Second Edition, Windows® Millennium Edition, Windows® 2000 をご使用の場合、IRQ ルーティングドライバおよび ACPI レジストリは既にシステムに組み込まれているので、4-in-1 ドライバのインストールは不要です。Windows® 98 SE ユーザーは、VIA レジストリ INF および AGP ドライバを個別にインストールすることでアップデートします。

最新バージョンの 4 in 1 ドライバについては VIA Technologies Incのサイトをご覧ください。

http://www.via.com/

VIA 4 in 1 ドライバのインストール

VIA 4 in 1 ドライバ(<u>IDE Bus マスタ</u> (Windows NT 用)、VIA ATAPI ベンダーサポートドライバ、VIA <u>AGP</u>、IRQ ルーティングドライバ (Windows 98 用)、VIA レジストリ(INF)ドライバ)は Bonus Pack CD ディスクのオートランメニューからインストール可能です。

ストール後再起動しても画面が黒くなって何も表示されなくなります。

オンボードサウンドドライバのインストール

このマザーボードにはAC97 CODECが装備され、サウンドコントローラーは VIA South Bridge チップセット内に位置します。 オーディオドライバは Bonus Pack CD ディスクオートランメニューから見つけられます。

オンボードAGP ドライバのインストール

VIA PLE133 チップセットには 2D/3D グラフィックスアクセラレータが搭載されており、AGP 4X モードでメインメモリに 1GB/sを上回る速度でアクセスできます。 AGP ドライバは Bonus Pack CD のオートランメニューから見つけられます。

LAN ドライバのインストール

Realtek RTL8139 ファミリーPCI Fast Ethernet アダプタに対応する Windows95/98, WindowsNT および Windows2000 環境での LAN ドライバは以下の手順でインストールします。

Microsoft Windows 95 環境でのドライバのインストール手順:

- 1. インストールするドライバを尋ねられたなら、「ハードウェア製造元の提供するディスクを使用」を選びます。
- 2. セットアップ用ファイルのフルパス名を指定します。

[CD-ROM]:Driver\LAN\RTL8100\Windows\Win95\WIN95A (Windows 95 および Win95A 用) または [CD-ROM]:Driver\LAN\RTL8100\Windows\Win95 (Windows 95 OSR2 用) です。

- 3. 指示に従って Windows 95 システムディスクを使用し、セットアップを完了させます。
- 4. Windows 95 が残りのインストールを自動的に行いますから、システムを再起動させます。

Win98/Win98 SE/Windows2000/Windows ME 環境でのドライバのインストール手順 :

- 1. インストールするドライバを尋ねられたなら、「ハードウェア製造元の提供するディスクを使用」を選びます。
- 2. セットアップ用ファイルのフルパス名を指定します。

[CD-ROM]:Driver\LAN\RTL8100\Windows\WIN98 (Windows 98/98 SE 用) または

[CD-ROM]:Driver\LAN\RTL8100\Windows\WIN2000 (Windows 2000 用) または

[CD-ROM]:Driver\LAN\RTL8100\Windows\Windows ME (Windows ME 用) です。

- 3. 指示に従ってシステムディスク(Win98/Win98 SE/Windows2000/Windows ME) を使用し、セットアップを完了させます。
- 4. Win98/Win98 SE/Windows2000/Windows ME が残りのインストールを自動的に行いますから、システムを再起動させます。

Microsoft Windows NT 環境でのドライバのインストール手順 :

- 1. NT のメイングループから「コントロールパネル」アイコンをダブルクリックします。
- 2. 「コントロールパネル」ウィンドウから「ネットワーク」アイコンをダブルクリックします。
- 3. 「ネットワーク設定」ダイアログボックスで、「アダプタの追加」ボタンを選びます。

「ネットワークアダプタの追加」ダイアログボックスが表示されます。

- 4. 「<その他> 製造元からのディスクを使用」を選び、ネットワークカードを選んで<Enter>を押します。
- 5. ドライブおよびパス名を入力します。

[CD-ROM]:\Driver\LAN\RTL8100\Windows\WinNT4 (NT 4.0 用)で OEMSETUP.INF の場所を指定し、「OK」ボタンを押します。

- 6. 「接続速度の選択」ダイアログボックスが表示されます。デフォルトの「自動設定」を選びます。「10」や「100」の数値は、 RTL8139 PCI Fast Ethernet アダプタの転送速度を強制的に 10Mb または 100Mb に設定する際に使用します。
- 7. 次に「EthernetID の入力」ダイアログボックスが表示されます。この設定は複数の Realtek RTL8139 PCI Fast Ethernet アダ プタを使用する際にのみ有効です。コンピュータにインストールされているアダプタが 1 つのみであれば「スキップ」を選び ます。
- 8. 「バスの位置」画面が次に表示されます。ご使用のコンピュータには複数のハードウェアバスが存在します。ネットワークア ダプタカードがインストールされているバスの種類とバス番号を入力してください。
- 9. これで NT はバインド処理を行います。その他ネットワークソフトウェア機能がインストールされている場合は、それらに対応する情報の入力を求められる場合があります。
- 10. システムを再起動させると、ネットワークサービスが使用可能になります。

注意:



- * 複数の LAN アダプタのインストール:
- 1. Windows NT を起動し、上記インストール手順ステップ 2 まで進み、「ネットワーク設定」ダイアログボックスで、「設定」 ボタンを押します。
- 2. 次に「EthernetID の入力」ダイアログボックスが表示されます。アダプタの Ethernet ID を入力してください。「OK」を選び「ネットワーク設定」を終了します。
- 3. コンピュータにインストールされているアダプタが1つのみであれば「スキップ」を選びます。

ハードウェアモニタ ユーティリティのインストール

ハードウェアモニタ ユーティリティをインストールすることで、CPU 温度、ファン回転速度、システム電圧がモニタできます。 ハードウェアモニタ機能は BIOS およびユーティリティソフトウェアにより動作するので、ハードウェアのインストールは不要です。

ACPI ハードディスクサスペンド

ACPI ハードディスクサスペンドは基本的には Windows のオペレーションシステムで管理されます。これで現在の作業 (システムモード、メモリ、画像イメージ)がハードディスクに保存され、システムは完全にオフにできます。次回電源をオンにした時は Windows の起動やアプリケーションの起動をせずに先回の作業がハードディスクから再度読み込まれ数秒間で復帰します。ご使用のメモリが通常の 64MB であれば、メモリイメージを保存するため 64MB のハードディスク空き領域が必要です。 電源ボタンを押すと、システムは S4 (ハードディスクサスペンド)モードからレジュームします。

サスペンドに入る時:

次回電源オンの時:

必要なシステム環境

- 1. AOZVHDD.EXE 1.30b またはそれ以降のバージョン
- 2. config.sys および autoexec.bat の削除

Windows 98 新システムでのフレッシュインストール

- 1. "Setup.exe /p j"を実行して Windows 98 をインストールします。
- 2. Windows 98 のインストール完了後、コントロールパネル>電源の管理を開きます。
 - a. 電源の設定 >システムスタンパイを"なし"に設定します。
 - b. "ハイバネーション"をクリックし、"ハイバネーションサポートを有効にする"を指定、"適用"をクリックします。
 - c. "詳細設定"タブをクリックすると、"パワーボタン"上に"ハイバネーション"が表示されます。 このオプションは上記のステップ b が実行されたあとでのみ表示され、未実行であれば、"スタンバイ"および"シャットダウン"だけが表示されます。 "ハイバネーション"を選び、"適用"をクリックします。
- 3. DOS を起動し、AOZVHDD ユーティリティを実行します。
 - a. ディスク全体が Win 98 システムで使用される(FAT 16 または FAT 32)場合は、"aozvhdd /c /file"を実行してください。この時覚えておかなければならないこととして、ディスクに十分な空きスペースが必要である点です。例えば、64 MB DRAM および 16 MB VGA カードがインストールされているなら、システムには 80 MB の空きスペースが必要です。ユーティリティは空きスペースを自動的に探します。
 - b. Win 98 用にパーティションを切っている場合、"aozvhdd /c /partition"を実行します。当然ですが、システムには未フォーマットの空きパーティションが必要です。
- 4. システムを再起動します。
- 5. これで ACPI ハードディスクサスペンドが使用可能になりました。"スタート > シャットダウン>スタンバイ"で画面は自動的

MX36LE-UI

にオフになります。システムがメモリ内容をハードディスクに保存するには 1 分程かかります。メモリサイズが大きくなるとこれに要する時間が長くなります。

APM から ACPI への変更 (Windows 98 のみ)

- 1. "Regedit.exe"を実行します。
 - a. 以下のパスをたどります。

HKEY LOCAL MACHINE

SOFTWARE

MICROSOFT

WINDOWS

CURRENT VERSION

DETECT

- b. "バイナリの追加"を選び、"ACPIOPTION"と名前を付けます。
- c. 右クリックして変更を選び、"0000"の後に"01"を付けて"0000 01"とします。
- d. 変更を保存します。
- 2. コントロールパネルから"ハードウェアの追加"を選びます。Windows 98 に新たなハードウェアを自動検出させます。(この際 "ACPI BIOS"が検出され、"Plug and Play BIOS"が削除されます。)
- 3. システムを再起動します。
- 4. DOS を起動し、"AOZVHDD.EXE /C /File"を実行します。

ACPIから APM への変更

- 1. "Regedit.exe"を実行します。
 - a. 以下のパスをたどります。

HKEY_LOCAL_MACHINE

SOFTWARE

MICROSOFT

WINDOWS

CURRENT VERSION

DETECT

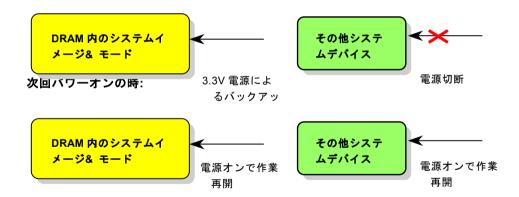
ACPI OPTION

b. 右クリックして変更を選び、"0000"の後に"02"を付けて"0000 02"とします。

とント: "02"は、Windows 98 が ACPI を検出したものの、ACPI 機能はオフになっていることの目印です。

- c. 変更を保存します。
- 2. コントロールパネルから"ハードウェアの追加"を選びます。Windows 98 に新たなハードウェアを自動検出させます。(この際 "Plug and Play BIOS"が検出され、"ACPI BIOS"が削除されます。)
- 3. システムを再起動します。

- 4. "新たなハードウェアの追加"を再度開くと、"Advanced Power Management Resource"が検出されます。
- 5. "OK"をクリックします。


ヒント:現在のところ、ATI 3D Rage Pro AGP カードの みが ACPI ハードディスクサスペンドをサポートして います。最新情報は AOpen ウェブサイトをご覧くださ い。

ACPI サスペンドトゥーRAM (STR)

このマザーボードはACPIサスペンドトゥーRAM機能をサポートしています。この機能により、Windows 98 やアプリケーションの再起動せずに、先回の作業を DRAM から再現することが可能です。DRAM へのサスペンドは作業内容をシステムメモリに保存するので、ハードディスクサスペンドより高速ですが、DRAM への電力供給が必要である面、電力消費がないハードディスクサスペンドとは異なります。

サスペンドに入る時:

ACPI サスペンドトゥーDRAM を使用可能にするには、以下の手順に従います。

必要なシステム環境

- ACPI対応のOSが必要です。現在選択できるのは Windows 98 だけです。Windows 98 の ACPIモードのセットアップは ACPIハードディスクサスペンド をご覧ください。
- 2. VIA 4 in 1 ドライバが正しくインストールされている必要があります。

手順

1. 以下の BIOS 設定を変更します。

BIOS Setup > Power Management Setup > ACPI Function : Enabled (オン)

BIOS Setup > Power Management Setup > ACPI Suspend Type :S3.

- 2. コントロールパネル>電源の管理とたどります。"パワーボタン"を "スタンバイ"に設定します。
- 3. パワーボタンまたはスタンバイボタンを押すとシステムが復帰します。

AWARD BIOS

システムパラメータの変更はBIOS セットアップメニューから行います。このメニューによりシステムパラメータを設定し、128 バイトの CMOS 領域 (通常、RTC チップの中か、またはメインチップセットの中)に保存できます。BIOS セットアップメニューを表示するには、POST (Power-On Self Test: 電源投入時の自己診断) 実行中にキーを押してください。

メモ:BIOS コードはマザーボードの設計の中でも変更が繰り返される部分なので、このマニュアルで説明されているBIOS 情報は、お持ちのマザーボードに実

装されているBIOS とは多少異なる場合があります。

A Open

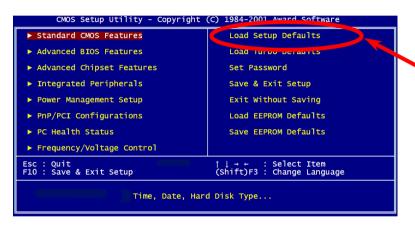
BIOS 機能の説明について...

AOpen はコンピュータシステムをよりユーザーフレンドリーにするよう努力しています。今回から BIOS セットアッププログラムの設定に関する説明全てが BIOS フラッシュ ROM に収録されました。それで BIOS セットアッププログラムのある機能を選択すると、画面右側にその機能の説明が表示されます。これで BIOS 設定の度にマニュアルを参照する必要がなりました。

Award™ BIOS セットアッププログラムの使用方法

一般には、選択する項目を矢印キーでハイライト表示させ、<Enter>キーで選択、<Page Up>および<Page Down>キーで設定値を変更します。また<F1>キーでヘルプ表示、<Esc>キーで Award™ BIOS セットアッププログラムを終了できます。下表には Award™ BIOS セットアッププログラム使用時のキーボード機能が説明されています。さらに全ての AOpen マザーボード製品では BIOS セットアッププログラムに特別な機能が加わっています。それは<F3>キーで表示する言語の指定が可能である点です。

+ -	説明
Page Up または+	次の設定値に変更または設定値を増加させる
Page Down または-	前の設定値に変更または設定値を減少させる
Enter	項目の選択
Esc	1. メインメニュー内:変更を保存せずに中止
	2. サブメニュー内: サブメニューからメインメニューに戻る
1	前の項目をハイライト表示する
1	次の項目をハイライト表示する


+ -	説明
←	メニュー内のハイライト部分を左に移動
\rightarrow	メニュー内のハイライト部分を右に移動
F1	メニューや項目のヘルプを表示する
F3	メニュー言語の変更
F5	CMOS から前回の設定値をロード
F6	CMOS からフェイルセーフ設定値をロード.
F7	CMOS からターボ設定値をロード.
F10	変更を保存してセットアップを終了

BIOS セットアップの起動方法

ジャンパー設定およびケーブル接続が正しく行われたなら準備完了です。電源をオンにし、<u>POST (Power-On Self Test:電源投入時の自己診断)</u> 実行中にキーを押すと、BIOS セットアップに移行します。推奨される最適なパフォーマンスには"Load Setup Defaults (デフォルト値のロード) "を選びます。

警告:ご使用のシステムコンポーネント(CPU, DRAM, HDD 等)がター ボ設定可能であることがはっきりしない場合は、"Load Turbo Defaults (ターボデフォルト値のロード)"は使用しないでください。

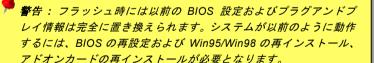
BIOS のアップグレード

マザーボードのフラッシュ操作をすることには、BIOS フラッシュエラーの可能性が伴うことをご了承ください。マザーボードが正常に安定動作しており、最新の BIOS バージョンで大きなバグフィックスがなされていない場合は、BIOS のアップデートは 行わないようお勧めします。

これを行うと BIOS フラッシュに失敗する可能性が存在します。アップグレードを実行する際には、マザーボードモデルに適した正しい BIOS バージョンを必ず使用するようにしてください。

AOpen Easy Flash は従来のフラッシュ操作とは多少異なる設計になっています。BIOS バイナリファイルとフラッシュルーチンが一緒になっているので、1 つのファイルを実行するだけでフラッシュ処理が可能です。

ご注意: AOpen Easy Flash BIOS プログラムは Award BIOS と互換性を持ちます。現在のところ、AOpen Easy Flash BIOS プログラムは AMI BIOS では使用できません。たいていの場合、AMI BIOS は以前の 486 ボードまたは初期の Pentium ボードで使用されています。アップグレードの前に BIOS パッケージに圧縮されている README ファイルをご参考になり、そのアップグレード手順に従ってください。これでフラッシュ時のエラーを最小限に抑えられます。



簡単なフラッシュ手順は以下のとおりです。(Award BIOS のみを対象)

- 1. AOpen のウェッブサイトから最新の BIOS アップグレードzip ファイルをダウンロードします。 例えば、MX36LEUI102.ZIP です。
- 2. シェアウェアの PKUNZIP (<a href="http://www.pkware.com/)で、バイナリ BIOS ファイルとフラッシュユーティリティを解凍します。

Windows 環境であれば、Winzip (http://www.winzip.com/)が使用できます。

- 3. 解凍したファイルを起動用フロッピーディスクにコピーします。 例えば、MX36I FUI102 BIN および MX36I FUI102 FXF です。
- 4. システムを DOS モードで再起動します。この際 EMM386 等のメモリ操作プログラムやデバイスドライバはロードしないようにしてください。約 520K の空きメモリ領域が必要です。
- 5. A:> MX36LEUI102 を実行すると後はプログラムが自動処理します。 フラッシュ処理の際は表示がない限り、絶対に電源を切らないで下さい。
- 6. システムを再起動し、キーを押して<u>BIOS セットアップを起動</u>します。"<u>Load Setup Defaults</u>"を選び、"<u>Save & Exit</u> Setup (保存して終了) "します。これでアップグレード完了です。

オーバークロック

マザーボード業界での先進メーカーであるAOpenは常にお客様のご要望に耳を傾け、ユーザー皆様の様々なご要求に合った製品を開発してまいりました。マザーボードの設計の際の私たちの目標は、信頼性、互換性、先進テクノロジー、ユーザーフレンドリーな機能です。これら設計上の分野の一方には、"オーバークロッカー"と呼ばれるシステム性能をオーバークロックにより限界まで引き出すよう努めるパワーユーザーが存在します。

このセクションはオーバークロッカーの皆さんを対象にしています。

この高性能マザーボードは最大 133MHz バスクロックをサポートします。しかしこれはさらに将来の CPU バスクロック用に 150MHz まで使用可能なように設計されています。弊社ラボのテスト結果によれば、高品質のコンポーネントと適切な設定により 150MHz が到達可能であることを示しています。150MHz へのオーバークロックは快適で、さらにマザーボードにはフルレンジ(CPU コア電圧) 設定および CPU コア電圧調整のオプション機能が備わっています。CPU クロックレシオは最大 13X で、これは Pentium III/Celeron CPU の大部分に対してオーバークロックの自由度を提供するものです。参考までに 150MHz バスクロックへとオーバークロックした際の設定値を紹介します。

これはオーバークロック動作を保証するものではありません。◎

著告:この製品はCPU およびチップセットベンダーの設計ガイドラインにしたがって製造されています。製品仕様を超える設定は薦められている範囲外であり、ユーザーはシステムや重要なデータの損傷などのリスクを個人で負わなければなりません。オーバークロックの前に各コンポーネント特にCPU、メモリ、ハードディスク、AGP VGA カード等が通常以外の設定に耐えるかどうかを確認してください。

ヒント:オーバークロックにより発熱の問題が生じることも考慮に入れます。冷却ファンとヒートシンクがCPU のオーバークロックにより生じる余分の熱を放散する能力があるか確認してください。

VGA カードおよびハードディスク

VGA およびハードディスクはオーバークロックで鍵となるコンポーネントです。以下のリストは弊社ラボでテストされた時の値です。このオーバークロックが再現できるかどうかは AOpen では保証いたしかねますのでご注意ください。弊社公認ウェブサイトで使用可能なベンダー一覧(AVL)をご確認ください。

VGA: http://www.aopen.com/tech/report/overclk/mb/vga-oc.htm

HDD: http://www.aopen.com/tech/report/overclk/mb/hdd-oc.htm

用語解説

AC97

基本的には AC97 規格はサウンドおよびモデム回路を、デジタルプロセッサおよびアナログ入出力用のCODECの2つに分け、AC97 リンクバスでつないだものです。データプロセッサはマザーボードのメインチップセットに組み込めるので、サウンドとモデムのオンボードの手間を軽減することができます。

ACPI (アドバンスド コンフィギュレーション&パワー インタフェース)

ACPI は PC97 (1997)のパワーマネジメント規格です。これはオペレーションシステムへのパワーマネジメントを<u>BIOS</u>をバイパスして直接制御することで、より効果的な省電力を行うものです。. チップセットまたはスーパーI/O チップは Windows 98 等のオペレーションシステムに標準レジスタインタフェースを提供する必要があります。この点は<u>PnP</u> レジスタインタフェースと少し似ています。ACPI によりパワーモード変更時の ATX 一時ソフトパワースイッチが設定されます。

AGP (アクセラレーテッドグラフィックポート)

AGP は高性能 3D グラフィックスを対象としたバスインタフェースです。AGP はメモリへの読み書き作業、1 つのマスター、1 つのスレーブのみをサポートします。AGP は 66MHz クロックの立ち上がりおよび下降の両方を利用し、2X AGP ではデータ転送速度は 66MHz x 4 バイト x 2 = 528MB/s となります。AGP は現在 4X モードに移行中で、この場合は 66MHz x 4 バイト x 4 = 1056MB/s となります。AOpen は 1999 年 10 月から AX6C (Intel 820)および MX64/AX64 (VIA 694x)により 4X AGP マザーボードをサポートしている初のメーカーです。

AMR (オーディオ/モデムライザー)

AC97 サウンドとモデムのソリューションである \underline{CODEC} 回路はマザーボード上または AMR コネクタでマザーボードに接続した ライザーカード(AMR カード)上に配置することが可能です。

AOpen Bonus Pack CD

AOpen マザーボード製品に付属のディスクで、マザーボード各種ドライバ、PDF 型式のオンラインマニュアル表示用の Acrobat Reader、その他役立つユーティリティが収録されています。

APM (アドバンスドパワーマネジメント)

ACPIとは異なり、BIOS が APM のパワーマネジメント機能の大部分を制御しています。AOpen ハードディスクサスペンドが APM パワーマネジメントの典型的な例です。

ATA (AT アタッチメント)

ATA はディスケットインタフェースの規格です。80 年代に、ソフトウェアおよびハードウェアメーカー多数により ATA 規格が確立されました。ATとは International Business Machines Corp.(IBM)のパソコン/AT のバス構造のことです。

ATA/66

ATA/66 はクロック立ち上がりと下降時の両方を利用し、<u>UDMA/33</u>の転送速度の 2 倍となります。データ転送速度は PIO mode 4 あるいは DMA mode 2 の 4 倍で、16.6MB/s x4 = 66MB/s です。ATA/66 を使用するには、ATA/66 IDE 専用ケーブルが必要です。

ATA/100

ATA/100 は現在発展中の IDE 規格です。ATA/100 も ATA/66と同様クロックの立ち上がりと降下時を利用しますが、クロックサイクルタイムは 40ns に短縮されています。それで、データ転送速度は $(1/40ns) \times 2$ がイト $\times 2 = 100$ MB/s となります。ATA/100 を使用するには ATA/66 と同様、専用の 80 芯線 IDE ケーブルが必要です。

BIOS (基本入出カシステム)

BIOS は<u>EPROM</u>または<u>フラッシュ ROM</u>に常駐する一連のアセンブリルーチンおよびプログラムです。BIOS はマザーボード上の入出力機器およびその他ハードウェア機器を制御します。一般には、ハードウェアに依存しない汎用性を持たせるため、オペレーションシステムおよびドライバは直接ハードウェア機器にではなく BIOS にアクセスするようになっています。

Bus Master IDE (DMA $\mp - F$)

従来の PIO (プログラマブル I/O) IDE では、機械的な操作待ちを含めた全ての動作を CPU から管理することが必要でした。CPU 負荷を軽減するため、バスマスターIDE 機器はメモリ間でのデータのやり取りを CPU を介さずに行うことで、データがメモリと IDE 機器間で転送中にも CPU の動作を遅くさせません。バスマスターIDE モードをサポートするには、バスマスターIDE ドライバおよびバスマスターIDE ハードディスクドライブが必要です。

CNR (コミュニケーション及びネットワーキングライザー)

CNR 規格は、今日の「つながれた PC」に広く使用される LAN、ホームネットワーキング、DSL、USB、無線、オーディオ、モデムサブシステムを柔軟かつ低コストで導入する機会を PC 業界に提供します。CNR は、OEM 各社、IHV カードメーカー、チップ供給メーカー、Microsoft によって支持されているオープンな工業規格です。

CODEC (符号化および復号化)

通常、CODEC はデジタル信号とアナログ信号相互の変換を行う回路を意味します。これはAC97 サウンドおよびモデムソリューションの一部です。

DIMM (デュアルインライン メモリモジュール)

DIMM ソケットには合計 168 ピンがあり、64 ビットのデータをサポートします。これには片面と両面とがあり、PCB の各側のゴールデンフィンガー信号が異なり、このためデュアルインラインと呼ばれます。ほとんどすべての DIMM は動作電圧 3.3V の SDRAM で構成されます。旧式の DIMM には FPM/EDO を使用する物があり、これは 5V でのみ動作します。これは SDRAM DIMM と混同できません。

ECC (エラーチェックおよび訂正)

ECC モードは 64 ビットのデータに対し、8 ECC ビットが必要です。メモリにアクセスされる度に、ECC ビットは特殊なアルゴリズムで更新、チェックされます。パリティーモードでは単ビットエラーのみが検出可能であるのに対し、ECC アルゴリズムは複ビットエラーを検出、単ビットエラーを自動訂正する能力があります。

EDO(拡張データ出力)メモリ

EDO DRAM テクノロジーは FPM (ファストページモード)と酷似しています。保存準備動作を開始し 3 サイクルでメモリデータ 出力する従来の FPM とは異なり、EDO DRAM はメモリデータを次のメモリアクセスサイクルまで保持する点で、パイプライン 効果に類似し、1 クロックモードの節約となります。

EEPROM (電子式消去可能プログラマブル ROM)

これは E^2 PROM とも呼ばれます。EEPROM および<u>フラッシュ ROM</u> は共に電気信号で書き換えができますが、インタフェース 技術は異なります。EEPROM のサイズはフラッシュ ROM より小型です。

EPROM (消去可能プログラマブル ROM)

従来のマザーボードでは BIOS コードは EPROM に保存されていました。EPROM は紫外線(UV)光によってのみ消去可能です。 BIOS のアップグレードの際は、マザーボードから EPROM を外し、UV 光で消去、再度プログラムして、元に戻すことが必要でした。

EV6 バス

EV6 バスは Digital Equipment Corp.社製の Alpha プロセッサテクノロジーです。EV6 バスは DDR SDRAM や ATA/66 IDE バスと同様、データ転送にクロックの立ち上がりと降下両方を使用します。

EV6 バスクロック= CPU 外部バスクロック x 2.

例えば、200 MHz EV6 バスは実際には 100 MHz 外部バスクロックを使用しますが、200 MHz に相当するクロックとなります。

FCC DoC (Declaration of Conformity)

DoC は FCC EMI 規定の認証規格コンポーネントです。この規格により、シールドやハウジングなしで DoC ラベルを DIY コンポーネント (マザーボード等)に適用できます。

FC-PGA (フリップチップ-ピングリッド配列)

FC とはフリップチップの意味で、FC-PGA は Intel の Pentium III CPU 用の新しいパッケージです。 これは SKT370 ソケットに 差せますが、マザーボード側で 370 ソケットへの追加信号を送る必要があります。これはマザーボードに新たな設計が必要であることを意味します。Intel は FC-PGA 370 CPU を出荷し、slot1 CPU は徐々に減少するでしょう。

フラッシュ ROM

フラッシュ ROM は電気信号で再度プログラム可能です。BIOS はフラッシュユーティリティにより容易にアップグレードできますが、ウィルスに感染し易くもなります。新機能の増加により、BIOS のサイズは 64KB から 256KB (2M ビット)に拡大しました。 AOpen AX5T は最初に 256KB (2M ビット)フラッシュ ROM を採用したマザーボードです。現在、フラッシュ ROM サイズは AX6C (Intel 820)および MX3W (Intel 810)マザーボードのように 4M ビットへと移行中です。AOpen 製マザーボードは EEPROM を使用することでジャンパーとバッテリー不要の設計を実現しています。

FSB (フロントサイドバス)クロック

FSB クロックとは CPU 外部バスクロックのことです。

CPU 内部クロック= CPU FSB クロック x CPU クロックレシオ

I²C Bus

See SMBusをご覧ください。

IEEE 1394

IEEE 1394 は Apple Computer がデスクトップ LAN として考案した低コストのデジタルインタフェースで、IEEE 1394 ワーキンググループによって発展してきました。IEEE 1394 ではデータ転送速度が 100, 200 または 400 Mbps となります。利用法の一つとして、デジタルテレビ機器を 200 Mbps で接続することが挙げられます。シリアルバスマネジメントにより、タイミング調整、バス上の個々の機器への適切な電力供給、同時間性チャネル ID 割り当て、エラー発生通知等の.シリアルバスの設定制御が行われます。IEEE 1394 のデータ転送には 2 つの方式があります。1 つは非同期、他方はアイソクロノス(isochronous)転送です。非同期転送は従来のコンピュータによるメモリへのマップ、ロード、ストアを行うインタフェースです。データ転送要求は特定のアドレスに送られ確認が返されます。日進月歩のシリコン技術に調和して IEEE 1394 にはアイソクロノス転送チャネルのインタフェースが用意されています。アイソクロノスデータチャネルは一定のクロック信号に合わせてデータ転送を行うもので、着実な転送が保証されます。これは時間要素が大きく効いてくるマルチメディアデータにとって特に有用で、データの即時転送によって手間のかかるバッファ処理を省くことができます。

パリティービット

パリティーモードは各バイトに対して 1 パリティービットを使用し、通常はメモリデータ更新時には各バイトのパリティービットは偶数の"1"が含まれる偶数パリティーモードとなります。次回メモリに奇数の"1"が読み込まれるなら、パリティーエラーが発生したことになり、単ビットエラー検出と呼ばれます。

PBSRAM(パイプラインドバースト SRAM)

Socket 7 CPU では、1 回のバーストデータ読み込みで 4QWord (Quad-word, 4x16 = 64 ビット)が必要です。PBSRAM は 1 つの アドレスデコード時間が必要なだけで、残りの Qwords の CPU 転送は予め決められたシーケンスで行われます。通常これは 3-1-1-1 の合計 6 クロックで、非同期 SRAM より高速です。PBSRAM は Socket 7 CPU の L2 (level 2)キャッシュにたびたび使用 されます。Slot 1 および Socket 370 CPU は PBSRAM を必要としません。

PC-100 DIMM

SDRAM DIMM のうち、100MHz CPU FSBバスクロックをサポートするものです。

PC-133 DIMM

SDRAM DIMM のうち、133MHz CPU FSBバスクロックをサポートするものです。

PCI (ペリフェラルコンポーネントインタフェース)バス

コンピュータと拡張カード間の周辺機器内部での高速データ転送チャンネルです。

PDF フォーマット

電子式文書の形式の一種である PDF フォーマットはプラットホームに依存しないもので、PDF ファイル読み込みには Windows, Unix, Linux, Mac …用の各 PDF Reader を使用します。PDF ファイル表示には IE および Netscape のウェブブラウザも使用できますが、この場合 PDF プラグイン (Acrobat Reader を含む)をインストールしておくことが必要です。

PnP(プラグアンドプレイ)

PnP 規格は BIOS およびオペレーションシステム (Windows 95 等)の双方に標準レジスタインタフェースを必要とします。これらレジスタは BIOS とオペレーションシステムによるシステムリソースの設定および競合の防止に使用されます。IRQ/DMA/メモリは PnP BIOS またはオペレーションシステムにより自動割り当てされます。現在、PCI カードのほとんどおよび大部分の ISAカードは PnP 対応済です。

POST (電源投入時の自己診断)

電源投入後の BIOS の自己診断手続きは、通常、システム起動時の最初または2番目の画面で実行されます。

RDRAM (Rambus DRAM)

ラムバスは大量バーストモードデータ転送を利用するメモリ技術です。理論的にはデータ転送速度は<u>SDRAM</u>よりも高速です。 RDRAM チャンネル操作でカスケード処理されます。Intel 820 の場合、1 つの RDRAM チャネルのみが認められ、各チャネルは 16 ビットデータ長、チャネルに接続可能な RDRAM デバイスは最大 32 であり、RIMMソケット数は無関係です。

RIMM (Rambus インラインメモリモジュール)

RDRAMメモリ技術をサポートする 184 ピンのメモリモジュールです。RIMM メモリモジュールは最大 16 RDRAM デバイスを接続できます。

SDRAM (同期 DRAM)

SDRAM は DRAM 技術の一つで、DRAM が CPU ホストバスと同じクロックを使用するようにしたものです (EDO) および FPM は非同期型でクロック信号は持ちません)。これはPBSRAMがバーストモード転送を行うのと類似しています。SDRAM は 64 ビット 168 ピンDIMMの形式で、3.3V で動作します。AOpen は 1996 年第 1 四半期よりデュアル SDRAM DIMM をオンボード(AP5V)でサポートする初のメーカーとなっています。

シャドウ E²PROM

 E^2 PROM 動作をシミュレートするフラッシュ ROM のメモリ領域のことで、AOpen マザーボードはシャドウ E^2 PROM によりジャンパーおよびバッテリー不要の設計となっています。

SIMM (シングルインラインメモリモジュール)

SIMM のソケットは 72 ピンで片面だけです。PCB 上のゴールデンフィンガーは両側とも同じです。これがシングルインラインと言われる所以です。SIMM は FPM またはEDO DRAM によって構成され、32 ビットデータをサポートします。SIMM は現在のマザーボード上では徐々に見られなくなっています。

SMBus (システムマネジメントバス)

SMBus は I2C バスとも呼ばれます。これはコンポーネント間のコミュニケーション(特に半導体 IC)用に設計された 2 線式のバスです。使用例としては、ジャンパーレスマザーボードのクロックジェネレーターのクロック設定があります。 SMBus のデータ転送速度は 100Kbit/s しかなく、1 つのホストと CPU または複数のマスターと複数のスレーブ間でのデータ転送に利用されます。

SPD (既存シリアル検出)

SPD は小さな ROM または<u>EEPROM</u>デバイスで<u>DIMM</u>または<u>RIMM</u>上に置かれます。SPD には DRAM タイミングやチップパラメータ等のメモリモジュール情報が保存されています。SPD はこの DIMM や RIMM 用に最適なタイミングを決定するのに<u>BIOS</u>によって使用されます。

Ultra DMA

Ultra DMA (または、より正確には Ultra DMA/33) は、ハードディスクからコンピュータのデータパス(またはバス)経由でのコンピュータのランダムアクセスメモリ(RAM)へのデータ転送プロトコルです。Ultra DMA/33 プロトコルでは、バーストモードで従来の<u>ダイレクトアクセスメモリ(DMA)</u> の 2 倍である 33.3MB/s のデータ転送速度を実現します。Ultra DMA はハードディスクメーカーの Quantum corp 社及びチップセットとコンピュータバステクノロジーメーカーの Intel 社によって提案された工業仕様です。お手持ちのコンピュータで Ultra DMA をサポートしている場合、システム起動及びアプリケーション起動が速いことを意味します。またユーザーがグラフィックス中心やハードディスク上の多量データへのアクセスを要するアプリケーションを使用する際の支援をします。Ultra DMA はサイクリカルリダンダンシーチェック(CRC)をサポートし、一歩進んだデータ保護を行います。Ultra DMA には、PIO や DMA と同様、40 ピン IDE インタフェースケーブルを使用します。

16.6MB/s x2 = 33MB/s

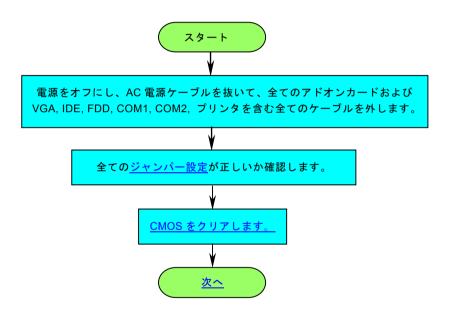
16.6MB/s x4 = 66MB/s

16.6MB/s x6 = 100MB/s

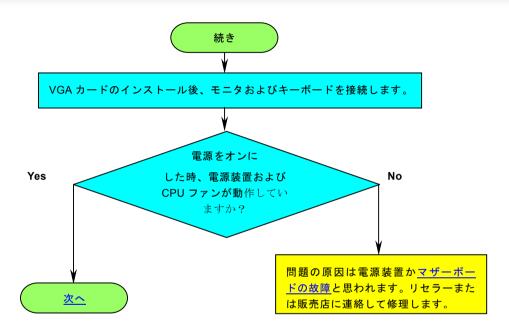
USB (ユニバーサルシリアルバス)

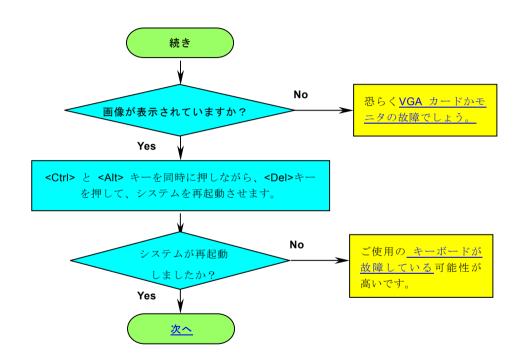
USB は 4 ピンのシリアル周辺用バスで、キーボード、マウス、ジョイスティック、スキャナ、プリンタ、モデム等の低・中速周辺機器 (10Mbit/s 以下)がカスケード接続できます。USB により、従来の PC 後部パネルの込み入った配線は不要になります。

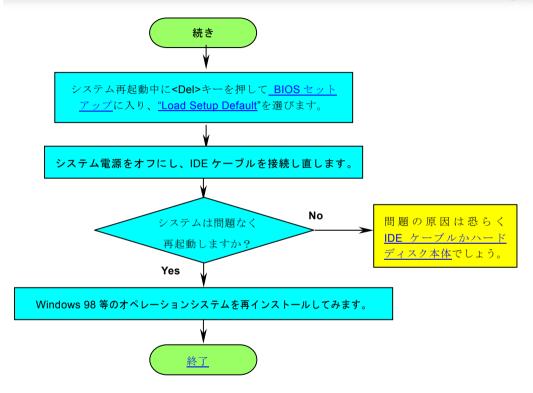
VCM(バーチャルチャンネルメモリ)


NEC 社の'バーチャルチャンネルメモリ (VCM)はメモリシステムのマルチメディアサポート能力を大幅に向上させる、新しい DRAM コア構造です。VCM は、メモリコアおよび I/O ピン間に高速な静的レジスタセットを用意することで、メモリバス効率および DRAM テクノロジの全体的性能を向上させます。VCM テクノロジーにより、データアクセスのレイテンシは減少し、電力消費も減少します。

ZIP ファイル


ファイルサイズを小さくするよう圧縮されたファイル。ファイルの解凍には、DOS モードや Windows 以外のオペレーションシステムではシェアウェアの PKUNZIP (http://www.pkware.com/) を、Windows 環境では WINZIP (http://www.winzip.com/)を使用します。


トラブルシューティング



テクニカルサポート

お客様各位

この度は AOpen 製品をお買い上げいただき誠にありがとうございます。お客様への最善かつ迅速なサービスが弊社の最優先するところでございます。しかしながら毎日いただくEメールおよび電話のお問合せが世界中から無数にあり、全ての方にタイムリーなサポートをご提供いたすのは困難を極めております。弊社にご連絡になる前に下記の手順で必要な解決法をご確認になることをお勧めいたします。皆様のご協力で、より多くのお客様に最善のサービスをご提供させていただけます。

皆様のご理解に深く感謝いたします。

AOpen テクニカルサポートチーム一同

1

オンラインマニュアル:マニュアルを注意深く読み、ジャンパー設定およびインストール手順が正しいことを確認してください。

http://www.aopen.com/tech/download/manual/default.htm

2

テストレポート: PC 組立て時の互換性テストレポートから board/card/device の 部分をご覧ください。

http://www.aopen.com/tech/report/default.htm

3

FAQ: 最新の FAQ (よく尋ねられる質問)からトラブルの解決法が見つかるかもしれません。

http://www.aopen.com/tech/fag/default.htm

4

ソフトウェアのダウンロード: 下表からアップデートされた最新の BIOS または

ユーティリティ、ドライバをダウンロードしてみます。

http://www.aopen.com/tech/download/default.htm

ニュースグループ: 発生したトラブルの解決法が、ニュースグループに掲載された弊社のサポートエンジニアまたはシニアユーザーのポスティングから見つかるかもしれません。

http://www.aopen.com/tech/newsgrp/default.htm

販売店、リセラーへのご連絡: 弊社は当社製品をリセラーおよびシステム設計者 を通して販売しております。ユーザーのシステム設定およびそのトラブルに対し て先方が弊社より明るい可能性があります。 またユーザーへの対応の仕方が次 回に別の製品をお求めになる際の参考ともなるでしょう。

弊社へのご連絡: ご連絡に先立ち、システム設定の詳細情報およびエラー状況を ご確認ください。パーツ番号、シリアル番号、BIOS バージョンも大変参考になります。

パーツ番号およびシリアル番号

パーツ番号およびシリアル番号はバーコードラベルに印刷されています。ラベルは包装の外側、ISA/CPU スロットまたは PCB のコンポーネント側にあります。以下が一例です。

P/N: 91.88110.201 がパーツ番号で、S/N: 91949378KN73 がシリアル番号です。

型式名および BIOS バージョン

型式名および BIOS バージョンはシステム起動時の画面 (POST 画面)の左上に表示されます。以下が一例です。

MX36LE-UI がマザーボードの型式名で、R1.00 が BIOS バージョンです。

製品の登録

AOpen 製品をお買い上げいただきありがとうございます。数分を利用して下記の製品登録をお済ましになるよう、AOpen からお勧めいたします。製品の登録により、AOpen 社からの質の高いサービスが提供されます。登録後のサービスは以下のとおりです。

- オンラインのスロットマシンゲームに参加し、ボーナス点数を貯めて AOpen 社の景品と引き換えることができます。
- Club AOpen プログラムのゴールド会員にアップグレードされます。
- 製品の安全上の注意に関する E メールが届きます。製品に技術上注意する点があれば、ユーザーに迅速にお知らせする ためです。
- 製品の最新情報が Eメールで届けられます。
- AOpen ウェブページをパーソナライズできます。
- BIOS/ドライバ/ソフトウェアの最新リリース情報がEメールで通知されます。
- 特別な製品キャンペーンに参加する機会があります。
- 世界中の AOpen 社スペシャリストからの技術サポートを受ける優先権が得られます。
- ウェブ上のニュースグループでの情報交換が可能です。

AOpen 社では、お客様からの情報は暗号化されますので他人や他社により流用される心配はございません。加えて、AOpen 社はお客様からのいかなる情報も公開はいたしません。弊社の方針についての詳細は、オンラインでのプライバシーの指針をご覧ください。

メモ:製品が相異なる販売店やリテーラーから購入されたり。購入日付が同一でない場合は、各製品別にユーザー登録を行ってください。

太平洋地区

AOpen Inc.

Tel: 886-2-3789-5888 Fax: 886-2-3789-5399 ヨーロッパ

AOpen Computer b.v. Tel: 31-73-645-9516

Fax: 31-73-645-9604

米国

AOpen America Inc. Tel: 1-408-922-2100

Fax: 1-408-922-2935

中国

艾尔鹏国际上海(股)有限公司

Tel: 86-21-6225-8622 Fax: 86-21-6225-2935 ドイツ

AOpen Computer GmbH. Tel: 49-2102-157700

Fax: 49-2102-157799

日本

AOpen Japan Inc.

Tel: 81-048-290-1800 Fax: 81-048-290-1820

ウェブサイト: http:/www.aopen.com

Eメール: 下記のご連絡フォームをご利用になりメールでご連絡ください。

英語 <u>http://www.aopen.com/tech/contact/techusa.htm</u>

日本語 http://www.aopen.co.jp/tech/contact/techjp.htm

中国語 <u>http://www.aopen.com.tw/tech/contact/techtw.htm</u>

ドイツ語 http://www.aopencom.de/tech/contact/techde.htm

フランス語 http://french.aopen.com/tech/contact/techfr.htm

簡体字中国語 <u>http://www.aopen.com.cn/tech/contact/techcn.htm</u>

