

Merlin PCI Pentium® Pro ISA Motherboard

User's Guide

© Copyright 1985-2010 American Megatrends, Inc. All rights reserved. American Megatrends, Inc. 5555 Oakbrook Parkway, Building 200, Norcross, GA 30093

This publication contains proprietary information which is protected by copyright. No part of this publication may be reproduced, transcribed, stored in a retrieval system, translated into any language or computer language, or transmitted in any form whatsoever without the prior written consent of the publisher, American Megatrends, Inc.

Limited Warranty

Buyer agrees if this product proves to be defective, that American Megatrends, Inc. is only obligated to replace or refund the purchase price of this product at American Megatrend's discretion according to the terms and conditions on the motherboard warranty card. American Megatrends shall not be liable in tort or contract for any loss or damage, direct, incidental or consequential. Please see the Warranty Registration Card shipped with this product for full warranty details.

Limitations of Liability

In no event shall American Megatrends be held liable for any loss, expenses, or damages of any kind whatsoever, whether direct, indirect, incidental, or consequential, arising from the design or use of this product or the support materials provided with the product.

Trademarks

VESA is a registered trademark of the Video Electronics Standards Association.

Intel and Pentium are registered trademarks of Intel Corporation.

MS-DOS, Microsoft Word, and Microsoft are registered trademarks of Microsoft Corporation. IBM, AT, XT, CGA, VGA, PS/2, OS/2, and EGA are registered trademarks of International Business Machines Corporation.

Fujitsu is a registered trademarkFoufjitsu America, Inc.

Motorola is a registered trademark of Motorola Corporation.

Hitachi is a registered trademark of Hitachi America, Ltd.

PNY is a registered trademark of PNY Corporation.

Oki is a registered trademarkOkfi America, Inc.

NEC is a registered trademark of NEC Corporation.

Samsung is a registered trademark of Samsung Electronics Corporation.

Siemens is a trademarkSiemens Corporation.

Mitsubishi is a registered trademark of Mitsubishi Electronics of America.

Micron is a registered trademark of Micron Corporation.

Unix is a registered trademark of American Telephone and Telegraph Company Bell Laboratories.

Weitek is a trademark of Weitek, Inc.

Toshiba is a registered trademark of Kabushiki Kaisha Toshiba.

VESA, VBE/PM, and DPMS are trademarks of Video Electronics Standards Association.

All other brand and product names are trademarks or registered trademarks of their respective companies.

Revision History

4/16/96 Initial release of priminary version

Table of Contents

1 Hardware Installation	1
Merlin PCI Dimensions	2
Merlin PCI Motherboard Lay.out	
Step 1 Unpack the Motherboard	
Avoid Static Electricity	
Step 2 Configure CP.U	
Step 3 Install Memory	
Step 4 Install the Motherboard	
Step 5 Attach Cables	
Step 6 Test and Configure	
2 WINBIOS Setup	33
Using a Mouse with WINBIOS Setup	
Using the Keyboard with WINBIOS Setup	
WINBIOS Setup Menu	
Section 1 Setup	
Standard Setup	
Advanced Setup	40
Chipset Setup	4.5
Power Management Setup	
PCI/PnP Setup	
Peripheral Setup	58
Section 2 Security	
AMIBIOS Password Support	
Setting a Password	63
Changing a Password	64
Anti-Virus	64
Section 3 Utility	65
Section 4 Default	65
3 Programming Flash ROM	67
4 Deleting a Password	
Index	73

To the OEM

Thank you for purchasing the highqrentance American Megatrends Merlin ISA motherboard. This product is a state of the art motherboard that includes the famous AMIBIOS. It is assumed that you have also licensed the rights to use the American Megatrends documentation for the American Megatrends Merlin motherboard

This manual was written for the OEM to assist in the proper installation and operation of this motherboard. This manual describes the specifications and features of the Merlin PCI motherboard. It explains how to assemble a system based on the Merlin PCI motherboard and how to use the AMIBIOS that is specifically designed for this motherboard.

This manual is not meant to be read by the computer owner who purchases a computer with this motherboard. It is assumed that you, the computer manufacturer, will use this manual as a sourcebook of information, and that parts of this manual will be included in the computer owner's manual.

Technical Suppolitan American Megatrends motherboard fails to operate as described or you are in doubt about a configuration option, please call technical support at 770-246-8645.

American Megatrends BBS

The American Megatrends BBS permits OEMs, VARs, and system integrators to access technical information about motherboard and BIOS products. Product Engineering Change Notices, Tech Tips, Technical Notes, and complete technical manuals are available.

Data Transmission Rates the American Megatrends BBS automatically handles modems with data transmission rates from 1,200 to 28,800 bps.

BBS Phone Numbers The following table lists the characteristics of the BBS phone numbers. The BBS requires no parity, eight data bits, and one stop bit.

Phone Number	Characteristics
770-246-8780	28,800 baud rate. Supports v.34.
770-246-8781	28,800 baud rate. Supports v.34.
770-246-8782	Supports HST and v.42.
770-246-8783	Supports HST and v.42.

Preface

Packing List

You should have received the following:

- a Merlin PCI motherboard,
- two serial cables,
- one parallel cable,
- a Warranty Card, and
- the American Megatrends Merlin PCI Pentium Pro Motherboard User's Guide.

1 Hardware Installation

Overview

The American Megatrends Merlin PCI Pentium Pro ISA motherboard features include:

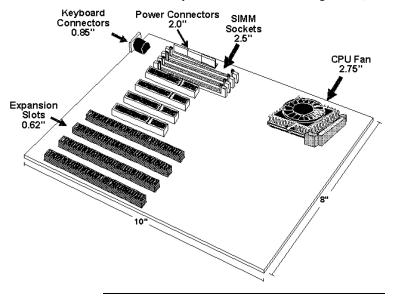
- support for an Intel Pentium Pro CPU operating at 133, 150, 166, 180, 200 MHz or higher,
- support for up to 512 MB of system memory,
 - parity checking or ECC,
- interleaved memory,
- PCI local bus throughput of 132 megabytes per second,
- four ISA expansion slots, and
- four PCI expansion slots.

ISA DMAr Bus Master The Merlin Pentium Pro PCI ISA

motherboard conforms to the PCI Version 2.1 specification, if terest 2.1 Compliance tion in Chipset Setup is set tenabled. The Version 2.1 PCI specification requires a deterministic latency for PCI devices. Computers that use ISA DMA or ISA bus masters will experience longer access latencies if the PCI 2.1 Compliance hipset Setup option is set to Enabled.

AMIBIOS automatically configures the PCI slots. The PCI slots are synchronous with the CPU clock:

CPU External Clock Frequency	PCI Expansion Slot Frequency
66 MHz	33 MHz
60 MHz	30 MHz
50 MHz	25 MHz


Onboard I/O

The Merlin Pentium Pro ISA motherboard includes:

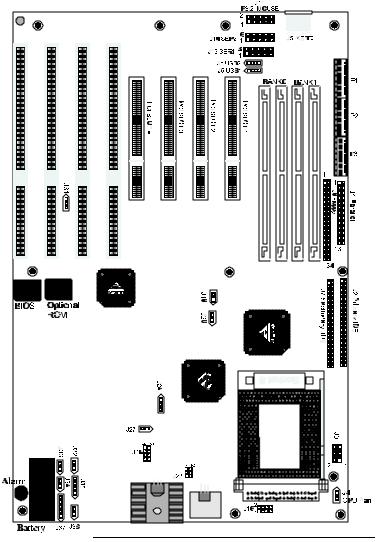
- two 40-pin IDE connectors for 1 4 IDE drives,
- a 34-pin floppy drive connector,
- two serial port connectors,
- a 25-pin parallel port connector,
- a keyboard DIN connector, and
- a 9-pin berg mouse connector

Merlin PCI Dimensions

The mother board is approximately 8" by 10" (the standard baby AT size and mounting holes).

Installation Steps

Step	Action	Turn to
1	Unpack the motherboard.	Page5
2	Configure the CPU.	Page6
	Configure the CPU.	Page6
	Select the CPU 3.3V Power	er Page6
	Source	
	Select the CPU Voltage.	Page7
	Select the CPU Speed.	Page7
	Install the CPU.	Page10
3	Install memory.	Page12
	Install System Memory.	Page12
4	Install the Motherboard.	Page15
5	Attach cables to connectors.	Page17
	Connect the Power Supply	. Page18
	Attach the Keyboard Cabl	e. Page20
	Connect the Mouse Cable.	Page21
	Attach Cables.	Page21
Connect Onboard I/O. Page		Page21
Connect the Serial Ports. Page21		Page21
Connect the Parallel Port. Pa		Page21
Connect Floppy Drive(s).		Page23
	Connect the IDE Drive(s).	Page27
6	Test and Configure.	Page32



Warning

This motherboard contains sensitive electronic components that can be easily damaged by static electricity. Follow the instructions carefully to ensure correct installation and to avoid static damage.

Merlin PCI Motherboard Layout

Pin 1 is identified by a square pin \square and by a pointed box on the silksereen.

Step 1 Unpack the Motherboard

Step	Action
1	Inspect the cardboard carton for obvious damage. If
	damaged, call 770-248645. Leave the motherboard in its
	original packing.
2	Perform all unpacking and installation procedures on a
	ground-connected antistatic mat. Wear an antistatic
	wristband grounded at the same point as the antistatic
	mat. Or use a sheet of conductive aluminum foil grounded
	through a 1 megaohm resistor instead of the anstatic
	mat. Similarly, a strip of conductive aluminum foil wrappe
	around the wrist and grounded through a 1 megaohm
	resistor serves the same purpose as the wristband.
3	Inside the carton, the motherboard is packed in an
	anti-static bag, and sandwiched between sheets of
	sponge. Remove the sponge and the antistatic bag. Place
	the motherboard on a grounded antistatic surface
	component side up. Save the original packing material.
4	Inspect the motherboard for damage. Press down on all
	ICs mounted in sockets to verify proper seating. Do not
	apply power to the motherboard if it has been damaged.
5	If the motherboard is undamaged, it is ready to be
	installed.

Set Jumpers

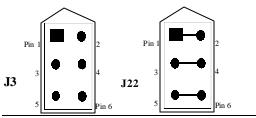
Set all jumpers and install the CPU before placing the motherboard in the chassis.

Avoid Static Electricity

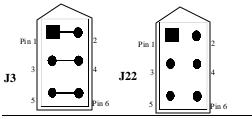
Static electricity can damage the motherboard and other computer components. Keep the motherboard in the anti-static bag until it is to be installed. Wear an anti-static wrist grounding strap before handling the motherboard. Make sure you stand on an anti-static mat when handling the motherboard.

Avoid contact with any component or connector on any adapter card, printed circuit board, or memory module. Handle these components by the mounting bracket. Jumpers J16, J19, J20, J24, AND J28 select the CPU type. See the drawing on pægfor the jumper locations. Set the jumpers described below before installing a CPU.

Important

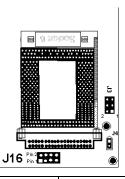

If you are not sure about the voltage specification for the CPU to be installed, call Intel to make sure that you set J16 correctly. The wrong voltage can damage the CPU.

3.3V CPU Power and J22re six-pin bergs that select the 3.3V CPU power source 3.3V power is available: via the regulator (default), or via a 3.3V power supply.


Important

J3 and J22 must not be jumpered at the same time

Regulator Poweret J3 and J22 as follows to configure 3.3V power from the regulator:


From 3.3V Power Supply J3 and J22 as follows to configure 3.3V power from the 3.3V power supply:

Cont'o

Step 2 Configure CPU, Continued

CPU Voltage J16is an 8-pin berg that sets the core CPU voltage.
J16 is near the CPU, as shown below:

Core CPU Voltage	J16 Setting
3.5V	Short Pins 1-2
	Short Pins 3-4
	Short Pins 5-6
	Short Pins 7-8
3.4V	Short Pins 1-2
	Short Pins 3-4
	Short Pins 5-6
3.3V (Factory Setting)	Short Pins 1-2
	Short Pins 3-4
	Short Pins 7-8
3.2V	Short Pins 1-2
	Short Pins 3-4
3.1 V	Short Pins 1-2
	Short Pins 5-6
	Short Pins 7-8
3.0V	Short Pins 1-2
	Short Pins 5-6
2.9V	Short Pins 1-2
	Short Pins 7-8
2.8V	Short Pins 1-2
2.7V	Short Pins 3-4
	Short Pins 5-6
	Short Pins 7-8
2.6V	Short Pins 3-4
	Short Pins 5-6
2.5 V	Short Pins 3-4
	Short Pins 7-8
2.4V	Short Pins 3-4
2.3V	Short Pins 5-6
	Short Pins 7-8
2.2V	Short Pins 5-6
2.1V	Short Pins 7-8
No Voltage	OPEN

Set CPU External Speed 19 and J20 set the external CPU speed, as follows:

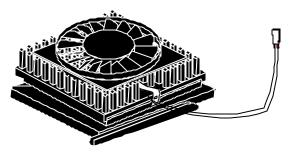
External CPU Speed	J19	J20
50 MHz	Shorted	Shorted
60 MHz	OPEN	Shorted
66.66 MHz	Shorted	OPEN

J28 CPU Clock Multiplies sets the CPU clock multipsieollows:

Clock Multiplier	J28 Pins 1-2	J28 Pins 3-4	J28 Pins 5-6	J28 Pins 7-8
2	Shorted	Shorted	Shorted	Shorted
2.5	OPEN	Shorted	Shorted	Shorted
3	Shorted	OPEN	Shorted	Shorted
3.5	OPEN	OPEN	Shorted	Shorted
4	Shorted	Shorted	OPEN	OPEN

Important

Please contact American Megatrends technical support at 770-246-8645 to support a CPU running at a higher speed.


Internal CPU Speed	External CPU Speed	Multiplier	J19	J20	J28
150	60	2.5	OPEN	Shorted	Short 3-4 Short 5-6
					Short 7-8
166	66.66	2.5	Shorted	OPEN	Short 3-4 Short 5-6 Short 7-8
180	60	3	OPEN	Shorted	Short 1-2 Short 5-6 Short 7-8
200	66.66	3	Shorted	OPEN	Short 1-2 Short 5-6 Short 7-8

Step 2 Configure CPU, Continued

Connect CPU Fam (shown below) is a two-pin berg that connects the fan on the CPU heat sink.

All Pentium Pro CPUs are shippedawhethur sink and a CPU fan. As shown below, the wire from the CPU fan has two leads. The fan cable has a red lead and a black leacConnect the Red lead to +12V.

Warning

The red wire from the CPU fan must be connected to Pin 1 of J4.

Step 2 Configure CPU, Continued

Install CPU

Install the CPI the ZIF (zero insertion force) socket by performing the following steps. The CPU socket is near one edge of the motherboard, as shown on pag€.

Warning

Improper CPU installation can damage the CPU and the motherboard. You must follow the procedures in this section exactly as documented. Make sure you wear an antistatic wristband while installing the CPU. Follow all antistatic procedures described on page 5.

Step	Action
1	Lift the lever on the ZIF socket. The empty CPU socke looks like this.
	Pin 1

Step	Action
2	Check for bent pins on the CPU. Gently straighten any bent pins with pliers. Place the CPU in the middle of the socket, as shown below. Make sure that pin 1 of the CPU is aligned with pin 1 of the socket sure you are properly grounded while handling the CPU.
	Pin 1
3	Complete installation by lifting the ZIF lever to the other side of the socket, as shown below.

Step 3 Install Memory

System MemoryThere are four 3\(\Omega\) t SIMM (Single Inline Memory Module) sockets. System memorst be populated one bank at a time. Each bank has two sockets. Bank0 includes U9 and U5. Bank1 includes U4 and U1. Each bank must be populated with the same type of SIMM. If a 4 MB SIMM is installed in the first socket in Bank0, then the same type of 4 MB SIMM must be installed in the second Bank0 SIMM socket. The minimum amount of system memory supported my the Merlin PCI is 8 MB. Each socket can hold one SIMM. You can use:

- 1 MB x 32 (or 36),
- 2 MB x 32 (or 36),
- 4 MB x 32 (or 36),
- 8 MB x 32 (or 36), or
- 16 MB x 32 (or 36) SIMMs.

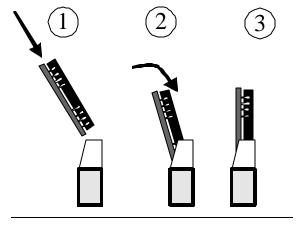
Fast Page Mode, EDO, and Burst EDO SIMMs cannot be mixed. The motherboard supports SIMMs operating at 50, 60, or 70 ns (RAS access time). Set the Chipset SeDRAM Speed (ns) option correctly.

Memory DisplaySystem memory is reported by AMIBIOS as it boots and again when the AMIBIOS System Configuration Screen is displayed just before the operating system boots. The memory displayed by AMIBIOS on the System Configuration Screen is 384 KB less than the total memory installed.

Step 3 Install Memory, Continued

Select SIMMs SIMMs must meet the following specifications:

Parameter	Specification
Page Mode	FAST
Refresh	CAS before RAS
t_{CAC}	≤ 20 ns
t_{RAC}	≤ 80 ns
t_{AA}	≤ 45 ns
t _{RP}	70 ns
t_{CPA}	≤ 45 ns


SIMM Part Numbers

Type	Manufacturer	Part Number
1 MB x 36	Micron	MT12D136M-7
"	Mitsubishi	MH1M36ADJ-7
44	PNY	P361000-70
**	Motorola	MCM36100AS-70
44	Oki	MSC2355-70YS12
**	Samsung	KMM5361000AV-7
2 MB x 36	PNY	P362000-70
**	Samsung	EMM53620036-70
4 MB x 36	Micron	MT12D436M-7
**	Mitsubishi	MH4M36SAJ-7
44	Motorola	MCM36400S-70
44	PNY	P364000-70
**	Samsung	KMM5364100-7
8 MB x 36	Motorola	MCM36800S-70
**	PNY	P368000-707
**	Samsung	KMM53681007
16 MB x 36	To be supplied.	

Step 3 Install Memory, Continued

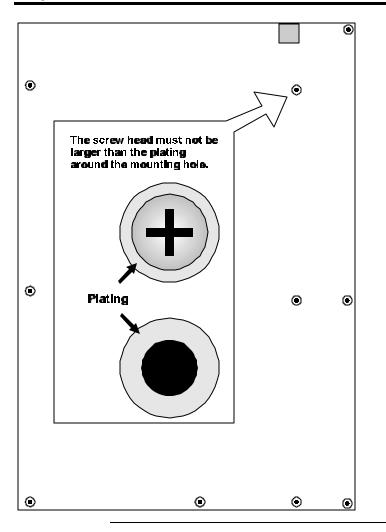
Installing SIMMshe four SIMM sockets on the motherboard can be filled with either 1 MB x 32 (or 36), 2 MB x 32 (or 36), 4 MB x 32 (or 36), 8 MB x 32 (or 36), or 16 MB x 32 (or 36) SIMMs.

> Place the motherboard on an anti-static mat. With the component side of the SIMM facing you, firmly push the SIMM into the socket at an angle, then push it up. When properly inserted, the SIMM clicks into place as the latching pins engage. The SIMM installation process is shown below:

Step 4 Install the Motherboard

The motherboam ounting hole pattern is the same as the mounting hole pattern on the standard baby AT motherboard. Standoffs and mounting screws are not supplied with the motherboard. The chassis manufacturer should supply these parts.

Step	Action
1	Place the chassis on an antistatic mat. Connect the chassis
	to ground to avoid static damage during installation.
	Connect an alligator clip with a wire lead to any unpainted
	part of the chassis. Ground the other end of the lead at the
	same point as the mat and the wristband.
2	Rotate the chassis so the front is to the right, and the rear is
	to the left. The side facing you is where the motherboard is
	mounted. The power supply is mounted at the far end of the
	chassis.
3	Hold the motherboard, componentide up, with the edge
	with the SIMM sockets toward you and the edge with the
	power supply connector away from you. The keyboard,
	mouse, and video connectors should be to the left.
4	Carefully slide the motherboard into the chassis. Make
	certain the edge connectors fit the ports in the rear of the
	chassis. The motherboard should rest level with the chassis.
5	Place the mounting screws in the holes provided and tighter
	them. If necessary, shift the motherboard slightly to align th
	mounting holes on the motherboard with the holes on the
	chassis. See the drawing on the next page.



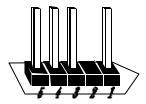
Warning

If using metallic screws, make sure you use them only in the plated mounting holes. If using metallic screws, make sure the head of the screw fits completely inside the plated mounting holes.

See the graphic on the following page.

Step 4 Install Motherboard, Continued

Step 5 Attach Cables

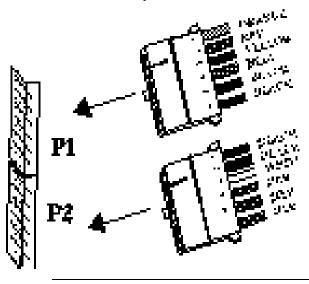

Connectors

The Merlin PCI motherboard includes many connectors. Connection instructions, illustrations of connectors, and pinouts are supplied in the following pages. A list of all connectors described in this section follows:

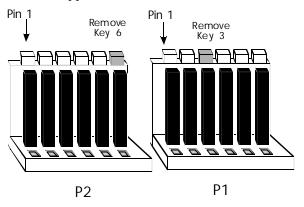
Connector	Turn to
Power supply connectors P1, P2, and P3	pages 18through 20
Keyboard connector J8	page 20
Mouse connector J11	page 21
Green PC power supply connector J10	page 22
Reset switch J32	page 22
Speaker J35	page 22
Keyboard lock connector J37	page 23
Turbo LED connector J34	page 23
IDE LED connector J36	page 23
Serial port connectors J12 and J13	page 24
Parallel port connector J1	page 25
Floppy connector J6	page 26
IDE drive connectors J2 and J7	pages 29through 31

Cable Connector Ends When connecting chassis connectors to the motherboard, make sure to connect the correct

connector end. Most connector wires are color-coded. Match the color of the wires leaving the switch or LED to the same pin on the connector end. There may be more than one connector with the same color-coded wires. If so, follow the wire to the switch or LED. All motherboard components are outlined by a white rectangular box with a broad arrow at one end. Pin 1 is always at the arrow end of the white outlined box, as shown below:



Connect Power Supply The power supply should match the physical configuration of the chassis. Make sure the power switch is off before assembly.


> Before attaching all components, make sure the proper voltage has been selected. Power supplies often can run on a wide range of voltages and must be set (usually via a switch) to the proper range. Use at least a 240 watt power supply, which should have built-in filters to suppress radiated emissions.

Connect Power Cables Attach the power supply cablesthe

power connector (P1 and P2) on the motherboard. AT-compatible power supplies have two six-pin connectors, attached as shown below. The six-pin connector on the power cable with three red wires and two black wires is attached to P1 pins 1-6. The other connector on the end of the power cable is attached to P2 pins 1-6.

PowerConnector Keys The power connectorseakeyed to prevent incorrect installation. The keys on the connector must be cut to fit on some power supplies, as shown below.

P1 Pinout

Pin	Description	
1	Power Good (Orange wire) (Not used	
2	VCC (Red wire)	
3	+12 Volts (Yellow wire)	
4	-12 Volts (Blue wire)	
5	Ground (Black wire)	
6	Ground (Black wire)	

P2Pinout

Pin	Description	
1	Ground (Black wire)	
2	Ground (Black wire)	
3	-5 Volts (White wire)	
4	VCC (Red wire)	
5	VCC (Red wire)	
6	VCC (Red wire)	

P3Pinout

P3 provides optional 3.3V power.

Pin	Description	
1	Ground (Black wire)	
2	Ground (Black wire)	
3	-5 Volts (White wire)	
4	3.3V	
5	3.3V	
6	3.3V	

Keyboard Connector The keyboarconnector (J8) is a six-pin DIN socket. The J5 pinout is shown below. The keyboard connector position is shown on plage

Pin	Assignments	
1	Keyboard clock	
2	Keyboard data	
3	Not used	
4	Ground	
5	VCC	

Connect Mouse Cable The mouse connector () list a 10-pin berg. The mouse cable is the same as the serial cable in the Merlin PCI motherboard. Two serial cables are shipped with the motherboard. Use one of these cables for the mouse, or you can make your own cable using the following pinout.

Pin	Description	Pin	Description
1	Mouse Clock	2	N/C
3	N/C	4	N/C
5	N/C	6	VCC
7	N/C	8	Mouse Data
9	Ground	10	N/C

PS/2 Mouse IRQ31is a three-pin berg that enables the PS/2 mouse interrupt (IRQ12). Short Pins 1-2 of J31 to enable IRQ12 as the PS/2 mouse interrupt. You should always short Pins 1-2 of J31 to enable the PS/2 mouse interrupt. The only reason you would ever have to short Pins 2-3 of J31 is if you wanted an adapter card on the ISA bus to use IRQ12. You would then have to set thouse Supportion in Advanced Setup to isabled.

J31 Pins 1-2 Shorted IRQ12 used for PS/2 Mouse

J10 Green PC Power0 is a two-pin berg that connects to a Green PC power supply. When the computer enters a power conserving state, a signal is sent from this berg to the power supply to permit the power supply to switch to a low power, high-efficiency mode.

The + on Pin 2 identifies the positive connector.

J32Reset Switch Connect is a two-pin single-inline berg that is attached via a cable to an externally-mounted reset switch.

> When the reset switch is pressed, the system performs a hard reset. Pin 1 is ground and Pin 2 is Hard Reset.

J35 Speaker Connector J35 is a four-pin singledine berg that is optionally attached via a cable to a standard system speaker. AMIBIOS signals hardware problems through the speaker. Pin 1 on the motherboard is identified by the arrow on the white box around the berg. The Merlin PCI motherboard also has a builtin speaker mounted on the motherboard.

Pin	Description
1	Data Out
2	Key
3	N/C
4	VCC

Keyboard Lock J37 is a five pin singingline berg that is attached via a cable to the keyboard lock connector (or separate keyboard lock and Power LED connectors). The computer chassis may not include the keyboard lock and Power LED on a single connector. The keyboard lock allows the user to lock the keyboard, protecting the system from unauthorized use. Pin 1 on the motherboard is identified by the broad arrow.

Pin	Description	
1	VCC	
2	Ground	
3	Ground	
4	Keyboard Lock (KBDINH)	
5	Ground	

J34 Turbo LED J34 is a twoin berg that is attached via a cable to the externally-mounted bipolar Turbo LED. The LED lightswhen the motherboard is running at high speed.

J36IDE LED

J36 is a two-pin berg that is attached via a cable to the externally-mounted IDE Activity LED. This LED lights when the IDE drive is running.

Warning

In some IDE drives, you may have to disable the IDE LED mounted on the drive by changing a jumper or setting a switch on the IDE drive itself, before the IDE drive sends a signal to J36.

The Merlin PCI motherboard has: Onboard Adapters

- two serial ports (J12 and J13),
- a parallel port (J1),
- an IDE controller on the PCI bus. The primary IDE connector is J2.
- The secondary IDE connector is J7.
- a floppy controller (J6).

The serial and parallel port connectors are described below. The IDE connector is described on 27age The floppy connector is described on p25ge

Conflicts

AMIBIOS minimizes conflicts between onboard and offboard I/O devices.

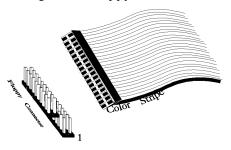
AMIBIOS automatically checks the adapter cards installed in the expansion slots on the Merlin PCI motherboard for a hard disk or floppy controller and serial or parallel ports.

J13 SERJ12 SER213 and J12 are 10-pin connectors that provide an

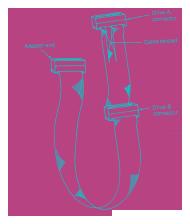
AT-compatible serial port interface. Connect the cables supplied with the motherboard to J13 and J12. The serial port base I/O port address and other serial port settings can be selected in Peripheral Setup in WINBIOS Setup.

The J13 and J12 inout is shown below.

Pin	Description	Pin	Signal Description
1	Carrier Detect	6	Data Set Ready
2	Receive Data	7	Request to Send
3	Transmit Data	8	Clear to Send
4	Data Terminal	9	Ring Indicator
	Ready		
5	Ground	10	CUT PIN


J1 Parallel Port J1 is a 26-pin connector for a parallel port. The J1 pinout is shown below. Connect the 16-pin to DB25 cable provided with the motherboard to J6. The parallel port interface supports the standard Centronics-compatible, ECP (Extended Capabilities Port), and EPP (Enhanced Parallel) parallel ports.

All parallel port settings must be correctly configured through Peripheral Setup in WINBIOS Setup.

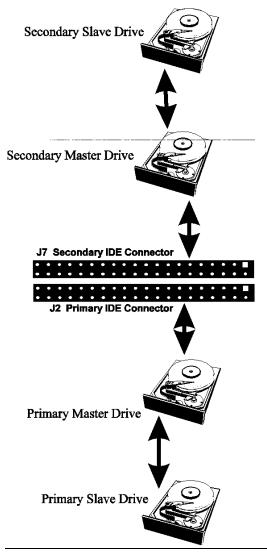

Pin	Signal Description	Pin	Signal Description
1	STROBE#	2	PD0
3	PD1	4	PD2
5	PD3	6	PD4
7	PD5	8	PD6
9	PD7	10	ACK#
11	BUSY	12	PE
13	SLCT	14	AUTOFD#
15	ERROR#	16	INIT#
17	SLCTIN#	18	Ground
19	Ground	20	Ground
21	Ground	22	Ground
23	Ground	24	Ground
25	Ground	26	Ground

J6 Floppy

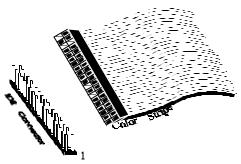
J6 is a 34-pin dual-inline berg. Connect the cable from the floppy drive to J6, as shown below. The onboard floppy controller cannot be used if a hard disk card with a floppy controller is installed. Choose Standard Setup and Peripheral Setup to configure the floppy controller.

The motherboard supports up to two 720 KB, 1.44 MB, or 2.88 MB 3½" drives and 360 KB and 1.2 MB 51/4" drives. The connecting cable is a 34-pin ribbon connector with two 34-pin edge connectors for attaching the floppy disk drives. There is a small twist in the cable between the floppy connectors. The last (end) connector should be connected to floppy drive A: as shown below.

J6 Floppy Connector Pinout


Pin	Use	Pin	Use
1	GND	2	DENSE1
3	GND	4	N/C
5	GND	6	DRATE0
7	GND	8	-INDEX
9	GND	10	-MOTOR0
11	GND	12	-FDSEL1
13	GND	14	-FDSEL0
15	GND	16	-MOTOR1
17	GND	18	DIR
19	GND	20	-
21	GND	22	-WDATA
23	GND	24	-WGATE
25	GND	26	-TRK0
27	GND	28	-WRPROT
29	GND	30	-RDATA
31	GND	32	HDSEL
33	GND	34	DSKCHNG

Twist in Floppy Cable


| Floppy B to A |
|---------------|---------------|---------------|---------------|
| 10 to 16 | 12 to 14 | 14 to 12 | 16 to 10 |
| 11 to 15 | 13 to 13 | 15 to 11 | |

IDE Drives

Attach the IDE drives in the following manner. Choose Peripheral Setup in WINBIOS Setup to enable the onboard IDE controller.

Attach IDE Cable to J2 J2 is the primary IDE (Integrated Drive Electronics) hard disk drive connector. Both the primary master and the primary slave IDE drives must be connected by cable to J2, as shown below.

J2 is a 40-pin dual-inline berg that connects an IDE drive to the primary onboard IDE connector. This motherboard supports IDE Modes 0, 1, 2, 3, and 4, IDE prefetch, LBA (Logical Block Address) mode, high capacity drives (over 528 MB), 32-bit data transfer, and fast IDE transfer. These IDE features are configured in Peripheral Setup in the WINBIOS Setup utility.

Disable the onboard IDE interface in Peripheral Setup to use an ISA ESDI, RLL, MFM, or SCSI hard disk drive controller.

J2 Pinout The J2 pinout is:

Pin	Use	Pin	Use
1	-RESET	2	GND
3	DATA7	4	DATA8
5	DATA6	6	DATA9
7	DATA5	8	DATA10
9	DATA4	10	DATA11
11	DATA3	12	DATA12
13	DATA2	14	DATA13
15	DATA1	16	DATA14
17	DATA0	18	DATA15
19	GND	20	KEY (N/C)
21	-REQ	22	GND
23	-IOW	24	GND
25	-IOR	26	GND
27	IDERDY	28	Pullup
29	-ACK	30	GND
31	INT14	32	N/C
33	HA1	34	N/C
35	HA0	36	HA2
37	-CS0	38	-CS1
39	-IDEACT	40	GND

J7Secondary IDE Controller, the secondary IDE connector, is a 40pin dual-inline berg that connects the secondary primary and slave IDE drives to the secondary onboard IDE controller.

> Attach the secondary master and slave IDE drives to J7 via a standard 40-pin IDE cable as shown on page 29.

Step 5 Attach Cables, Continued

J7 Pinout The J7 pinouits:

Pin	Use	Pin	Use	
1	-RESET	2	GND	
3	DATA7	4	DATA8	
5	DATA6	6	DATA9	
7	DATA5	8	DATA10	
9	DATA4	10	DATA11	
11	DATA3	12	DATA12	
13	DATA2	14	DATA13	
15	DATA1	16	DATA14	
17	DATA0	18	DATA15	
19	GND	20	KEY (N/C)	
21	-REQ	22	GND	
23	-IOW	24	GND	
25	-IOR	26	GND	
27	IDERDY	28	Pullup	
29	-ACK	30	GND	
31	INT15	32	N/C	
33	HA1	34	N/C	
35	HA0	36	HA2	
37	-CS2	38	-CS3	
39	N/C	40	GND	

Step 6 Test and Configure

Review the following points before powering up:

- make sure that all adapter cards are seated properly,
- make sure all connectors are properly installed,
- make sure the CPU is seated properly,
- make sure there are no screws or other foreign material on the motherboard,
- plug the system into a surge-protected power strip, and
- make sure blank back panels are installed on the back of the chassis to minimize RF emissions.

Start the Test

Plug everything in and turn on the switch. If there are any signs of a problem, turn off the unit immediately. Reinstall the connectors. Call Technical Support if there are problems.

BIOS Errors

If the system operates normally, a display should appear on the monitor. The BIOS Power On Self Test (POST) should execute.

If POST does not run successfully, it will beep or display error messages. Beeps indicate a serious problem with the system configuration or hardware. The Beep Code indicates the problem. AMIBIOS Beep Codes are defined three AMIBIOS Technical Reference. Make sure the affected part is properly seated and connected. An error message is displayed if the error is less serious. Recheck the system configuration or the connections.

Configure the System Run WINBIOS Setup. You must enter the requested information and save the configuration data in NVRAM. The system will then reset, run POST, and boot the operating system. See 36ge for information on configuring the computer.

2 WINBIOS Setup

In ISA and EISA computers, the system parameters (such as amount of memory, type of disk drives and video displays, and many other elements) are stored in NVRAMNon-Volatile Random Access Memory), also called CMOS RAM. Unlike the DRAM (dynamic random access memory) that is used for standard system memory, NVRAM requires very little power. When the computer is turned off, a back-up battery provides power to NVRAM, which retains the system parameters. Every time the computer is powered-on, the computer is configured with the values stored in NVRAM by the system BIOS, which gains control when the computer is powered on.

The system parameters are configured by a system BIOS Setup utility. Historically, BIOS Setup utilities have been character-based, required keyboard input, and have had user interfaces that were not very intuitive.

Graphical Setup merican Megatrends has a new type of system
BIOS Setup utility. WINBIOS Setup has a graphical
user interface the end user can access using a
mouse. The WINBIOS Setup code is so compact
that it can reside on the same ROM as the system
BIOS. The system configuration parameters are set
by WINBIOS Setup.

Since WINBIOS Setup resides in the ROM BIOS, it is available each time the computer is turned on.

Starting WINBIOS Setups POST executes, the following appears:

Hit if you want to run SETUP

Press to run WINBIOS Setup.

Using a Mouse with WINBIOS Setup

WINBIOS Setup has a built-in mouse driver and can be accessed by either a serial mouse or PS/2-style mouse. WINBIOS Setup supports Microsoft-Compatible serial mice and all PS/2-type mice.

The mouse click functions are: single click to change or select both global and current fields and double-click to perform an operation in the selected field.

Using the Keyboard with WINBIOS Setup

WINBIOS has a built-in keyboard driver that uses simple keystroke combinations:

Keystroke	Action
<tab></tab>	Change or select a global field.
$<\rightarrow$, \leftarrow , \uparrow , \downarrow	Change or select the current field.
<enter></enter>	Perform an operation in the current field
+	Increment a value.
_	Decrement a value.
<esc></esc>	Abort any window function.
<pgup></pgup>	Return to the previous page
<pgdn></pgdn>	Advance to the next page.
<home></home>	Returns to the beginning of the text.
<end></end>	Advance to the end of the text.
<ctrl><alt><+</alt></ctrl>	Change to high speed
>	
<ctrl><alt><-></alt></ctrl>	Change to low speed.

WINBIOS Setup Menu

The WINBIOS Setup main menu, shown below, is organized into four sections. Each of these sections corresponds to a section in this chapter.

Each section contains several icons. Clicking on each icon activates a specific AMIBIOS function. The WINBIOS Setup main windows and related functions are described on the next page.

Main Windows The WINBIOS Setup main windows are:

WINBIOS Setup Windows	See Section	on page
The Setup icons allow you to set system	1	page 36
configuration options such as date, time,		
hard disk type, and floppy type.		
The Utilities section allows you to change	2	page 65
the WINBIOS Setup screen colors and to		
change the language that WINBIOS Setup		
screen message are written in.		
The Security icons allow you to configure	3	page 62
passwords and enable AMIBIOS anti-virus		
protection.		
Default has three icons that permit you to	4	page 66
select a group of settings for all AMIBIOS		
WINBIOS Setup options.		

Section 1 Setup

Standard Setup

Standard Setupptions are displayed by choosing the Standard icon from the WINBIOS Setup main menu. All Standard Setup options are described in this section.

Date/Time

Select the Date and Time icon. The current values for each category are displayed. Enter new values through the keyboard.

Floppy Drive A: and B Move the cursor to these fields via the PgUp and PgDn keys and select the floppy type.

> The settings are 360 KB 51/4 inch, 1.2 MB 51/4 inch, 720 KB 3½ inch, 1.44 MB 3½ inch, or 2.88 MB 3½ inch.

Pri MasterPri Slave, Sec Master, Sec Slasvelect one of these hard disk drive icons to configure the hard disk drive named in the option. SelActo from the drive parameters screen to let AMIBIOS automatically configure the drive. A screen with a list of drive parameters appears. ClickOM to configure the drive.

Drive Type	How to Configure
SCSI	SelectType. SelectNot Installed in the drive parameter
	screen.
IDE	SelectType. SelectAuto to let AMIBIOS determine the
	parameters. Click on OK when AMIBIOS displays the
	drive parameters.
	SelectLBA/Large Mode . Select On if the drive has a
	capacity greater than 540 MB.
	Select Block Mode . Select On to allow block mode data transfers.
	Select 32-Bit Transfer. Select On to allow 32-bit data transfers.
	Select the PIO Mode. It is best to select Auto to allow AMIBIOS to determine the PIO mode. If you select a
	PIO mode that is not supported by the IDE drive, the
	drive will not work properly. If you are absolutely
	certain that you know the drive's PIO mode, select PIC mode 0 - 5.
CD-ROM	Select Type. Select CDROM. Click on OK when
	AMIBIOS displays the drive parameters.
Standard	Select <i>Type</i> . You must know the drive parameters.
MFM Drive	Select the drive type that exactly matches your drive's
	parameters.
Non-	Select <i>Type</i> . If the drive parameters do not match the
Standard	drive parameters listed for drive types 1 - 46, select
MFM Drive	User and enter the drive parameters for you hard disk
	drive.

Standard Setup, Continued

Entering Drive Parameters u can also enter the hard disk drive parameters. The drive parameters are:

Parameter	Description	
Type	The number for a drive with certain identification	
	parameters.	
Cylinders	The number of cylinders in the disk drive.	
Heads	The number of heads.	
Write Precompensation	The size of a sector gets progressively smaller as the track diameter diminishes. Yet each sector must still 512 bytes. Write precompensation circuitry on the har disk compensates for the physical difference in sector size by boosting the write current for sectors on inner tracks. This parameter is the track number where write precompensation begins.	d
Landing Zone	This number is the cylinder location where the heads normally park when the system is shut down.	will
Sectors	The number of sectors per track. MFM drives have 17 sectors per track. RLL drives have 26 sectors per track ESDI drives have 34 sectors per track. SCSI and IDE drive may have even more sectors per track.	
Capacity	The formatted capacity of the drive is the number of heads times the number of cylinders times the number sectors per track) times 512 (bytes per sector).	r of

Standard Setup, Continued

MFM Hard Disk Drive Types

Type	Cylinders	Heads	Write Precompensation	Landing Zone	Sectors	Capacity
1	306	4	128	305	17	10 MB
2	615	4	300	615	17	20 MB
3	615	6	300	615	17	31 MB
4	940	8	512	940	17	62 MB
5	940	6	512	940	17	47 MB
6	615	4	65535	615	17	20 MB
7	462	8	256	511	17	31 MB
8	733	5	65535	733	17	30 MB
9	900	15	65535	901	17	112 MB
10	820	3	65535	820	17	20 MB
11	855	5	65535	855	17	35 MB
12	855	7	65535	855	17	50 MB
13	306	8	128	319	17	20 MB
14	733	7	65535	733	17	43 MB
16	612	4	0	663	17	20 MB
17	977	5	300	977	17	41 MB
18	977	7	65535	977	17	57 MB
19	1024	7	512	1023	17	60 MB
20	733	5	300	732	17	30 MB
21	733	7	300	732	17	43 MB
22	733	5	300	733	17	30 MB
23	306	4	0	336	17	10 MB
24	925	7	0	925	17	54 MB
25	925	9	65535	925	17	69 MB
26	754	7	754	754	17	44 MB
27	754	11	65535	754	17	69 MB
28	699	7	256	699	17	41 MB
29	823	10	65535	823	17	68 MB
30	918	7	918	918	17	53 MB
31	1024	11	65535	1024	17	94 MB
32	1024	15	65535	1024	17	128 MB
33	1024	5	1024	1024	17	43 MB
34	612	2	128	612	17	10 MB
35	1024	9	65535	1024	17	77 MB
36	1024	8	512	1024	17	68 MB
37	615	8	128	615	17	41 MB
38	987	3	987	987	17	25 MB
39	987	7	987	987	17	57 MB
40	820	6	820	820	17	41 MB
41	977	5	977	977	17	41 MB
42	981	5	981	981	17	41 MB
43	830	7	512	830	17	48 MB
44	830	10	65535	830	17	69 MB
45	917	15	65535	918	17	114 MB
46	1224	15	65535	1223	17	152 MB

Advanced Setup

Advanced Setup options are displayed by choosing the Advanced icon from the WINBIOS Setup main menu. All Advanced Setup options are described in this section.

Typematic RateThis option sets the rate at which characters on the screen repeat when a key is pressed and held down. The settings ar slow or Fast.

The Optimal and Fail-Safe default settingustre

System Keyboardhis option does not specify if a keyboard is attached to the computer. Rather, it specifies if error messages are displayed if a keyboard is not attached. This option permits you to configure workstations with no keyboards. The settings are Absent or Present.

> The Optimal and Fail-Safe default settings are Present.

Primary DisplayThis option configures the type of monitor attached to the computer. The settings Mono, CGA40x25, CGA80x25, VGA/EGA.orAbsent. The Optimal and Fail-Safe default settings GAAEGA.

Mouse Support Set this option tEnabled to enable AMIBIOS support for a PS/2-type mouse. Pins 1J-328cdn the motherboard must be shorted together to enable PS/2 mouse support he settings ar *Enabled* or Disabled.

> The Optimal and Fail-Safe default settings are Enabled.

Hit Message DispSæy this option tDisabled to prevent

Hit if you want to run Setup

from appearing when the system boots. The settings are Enabled or Disabled. The Optimal and Fail-Safe default settings Enabled.

Wait for <F1> If ErAMIBIOS POST runs system diagnostic tests that can generate a message followed by:

Press <F1> to continue

If this option is set tonabled, AMIBIOS waits for the end user to press <F1> before continuing. If this option is set tonabled, AMIBIOS continues the boot process without waiting for <F1> to be pressed. The settings at Enabled or Disabled. The Optimal and Fail-Safe default setting Enabled.

Boot Up Num Loskt this option ton to turn off the Num Lock key when the system is powered on so you can use the arrow keys on both the numeric keypad and the keyboard.

The settings ar On or Off. The Optimal default setting is Off. The Fail-Safe default settin Q n's

Password Checkhis option enables password checking every time the system boots or when you run WINBIOS Setup. If Always is chosen, a user password prompt appears every time the computer is turned on. If Setup is chosen, the password prompt appears if WINBIOS is executed. See pageor instructions on changing a password. The Optimal and Fail-Safe defaults ar Setup.

OS/2 Compatible ModeSet this option tEnabled if running OS/2 operating system and using more than 64 MB of system memory on the motherboard. The settings are Enabled or Disabled. The Optimal and Fail-Safe default settings and isabled.

Floppy Drive SeeW hen this option is set Enabled, AMIBIOS performs a Seek command on floppy drive A: before

booting the system. The settings Exeabled or Disabled. The Optimal default settin Disabled.

The Fail-Safe default settin Einsabled

Floppy Drive Swapt this option tEnabled to permit drives A: and

B: to be swapped. The settings Exeabled or Disabled. The Optimal and Fail-Safe default settings are Disabled.

Quick Boot

Set this option tEnabled to allow the BIOS to boot to the operating system within 5 seconds after the computer power switch is turned on. The settings ar Enabled or Disabled. The Optimal default setting i Enabled. The Fail-Safe default setting is Disabled.

Boot Up Sequence his option sets the sequence of boot drives

(floppy drive A:, hard disk drive C:, or a CD-ROM drive) AMIBIOS attempts to boot from after AMIBIOS POST completes. The settings are *C*:,*A*:,*CDROM*, *A*:,*C*:,*CDROM*, *or CDROM*,*C*:,*A*:. The Optimal default settin £isA:, CDROM. The Fail-Safe default setting is C:, CDROM.

L1/L2 Cache

Set this option tEnabled to enable L1 internal and L2 secondary cache memory. The settings are Enabled or Disabled. The Optimal default setting is Enabled. The Fail-Safe default settin Disabled.

System BIOS CacheableWhen this option is set Enabled, the contents of the F0000h system memory segment can be read from or written to L2 secondary cache memory. The contents of the F0000h memory segment are always copied from the BIOS ROM to system RAM for faster execution. The settings are Enabled or Disabled. The Optimal default setting is Enabled. The Fail-Safe default settin Prisabled.

Caching Controllset this option tBresent if a cache controller is installed in the computer. The Optimal and Fail-Safe default settings arebsent.

Setting	Description
Absent	To comply with the PCI specifications, PCI
(the Optimal	adapter cards must be reset every time the CPU is
and Fail-	reset. When the end user forces a soft reset by
Safe default	pressing <ctrl> <alt> , only the CPU is</alt></ctrl>
setting)	reset. When this option is set to No, all soft
	resets are converted to hard resets, and all PCI
	adapter cards are reset when the CPU is reset.
Present	Soft resets still behave like soft resets when
	Present is selected. Select this option if a caching
	controller is installed in the computer. Soft resets
	must not generate a hard reset if a caching
	controller is used. If a hard reset is generated, a
	PCI caching controller card may not be able to
	flush data from its cache memory to a hard disk
	drive before the reset.

Video Shadow C000, 32K s option specifies the way that the 32 KB of video ROM beginning at C0000h is treated. The settings are:

Setting	Description
Disabled	The contents of the video ROM are not copied to RAM.
Cached	The contents of the video ROM area from C0000h - C7FFFh are not only copied from ROM to RAM, the contents of the C0000h - C7FFFh RAM area can be written to or read from cache memory.
Shadow	The contents of the video ROM area from C0000h - C7FFFh are copied (shadowed) from ROM to RAM for faster execution.

The Optimal default settin Einsched. The Fail-Safe default setting iDisabled.

Shadow C800,16K Shadow CC00.16K Shadow D000,16K Shadow D400,16K Shadow D800, 16K

Shadow DC00,16K These options enable shadowing of the contents of the ROM area named in the option title. The ROM area that is not used by ISA adapter cards will be allocated to PCI adapter cards. The

settings are:

Setting	Description
Disabled	The contents of the video ROM are not copied to RAM.
Cached	The contents of the video ROM area from C0000h - C7FFFh are not only copied from ROM to RAM, the contents of the C0000h - C7FFFh RAM area can be written to or read from cache memory.
Shadow	The contents of the video ROM area from C0000h - C7FFFh are copied (shadowed) from ROM to RAM for faster execution.

The Optimal and Fail-Safe defaultDiambled.

Chipset Setup

Chipset Setup options are displayed by choosing the Chipset icon from the WINBIOS Setup main menu. All Chipset Setup options are described in this section.

PCI 2.1 Compliance this option tenabled to program the chipset to comply with the PCI V2.1 specification. The Version 2.1 PCI specification requires a deterministic latency for PCI devices. Computers that use ISA DMA or ISA bus masters will experience longer access latencies if the CI 2.1 Compliance Setup option is set tenabled.

Set this option tDisabled to program the chipset to comply with the PCI V2.0 specification. The settings are Enabled or Disabled. The Optimal and Fail-Safe default settings Disabled.

DRAM Speed (nh shis option specifies the RAS access time (in nanoseconds) of the DRAM used in the computer for system memory. The settings 50 res, 60 ns, or 70 ns. The Optimal and Fail-Safe default settings are 70 ns.

DRAM ECC Modhis option sets the type of system memory checking. The settings are:

Setting	Description
Disabled	No error checking or error reporting is done.
Level I	Multibit errors are detected and reported as parity errors. Single-bit errors are corrected by the chipset. Corrected bits of data from memory are not written back to DRAM system memory. If Level I is selected, the J27 External SMI software jumper on the Series 735 board is disabled.
Level II	Multibit errors are detected and reported as parity errors. Single-bit errors are corrected by the chipset and are written back to DRAM system memory. If a soft (correctable) memory error occurs, writing the fixed data back to DRAM system memory will resolve the problem. Most DRAM errors are soft errors. If a hard (uncorrectable) error occurs, writing the fixed data back to DRAM system memory does not solve the problem. In this case, the second time the error occurs in the same location, a Parity Error is reported, indicating an uncorrectable erro*LeVel II is selected, AMIBIOS automatically set*Standard Power Management option in Power Management Setup*Enabled to make sure that the System Management Inter(\$MI) is enabled. If you do not want to enable power management, set the Advanced Power Management (APM) option to Disabled and set all Power Management Setup timeout option*Disabled. To enable power management, *Advanced Power Management (APM) to *Enabled* and set the power management timeout options as desired.

The following illustrates the difference between Level I and Level IIECC. Suppose a DRAM SIMM has a single bit uncorrectable error. Even writing fixed data to this bit will not remove the error.

Setting	then	
Level I	The data error is fixed during the memory read cycle every time	the
	bad bit is accessed and the system continues to run, although ev	ery
	time the bad bit is read and corrected, CPU cycles are wasted.	
Level II	The system tries to write the corrected data back to the bad bit	n
	the DRAM SIMM. Since the bad bit in the SIMM cannot be fixe writing data to the bad bit has no effect. The next time the error location is read, the chipset will once again find a bad bit. The chipset generates a Parity Error, indicating an uncorrectable memory error.	

The Optimal and Fail-Safe defaultsianbled.

ISA VGA USW C/Video Frame Bufferify the starting address of the VGA USW C/video frame bufffersettings:

Setting	Description
Disabled	No VGA video frame buffer is available.
A0000h	The system memory segment beginning at A0000h is
	used for the VGA USWC/video frame buffer.
B0000h	The system memory segment beginning at B0000h is
	used for the VGA USWC/video frame buffer.
Both	The 128 KB of system memory from A0000h through
	BFFFFh is used for the VGA USWC/video frame buff

VGA card drivers may not behave correctly when this option is not set to bisabled. The Optimal and Fail-Safe default settings Drivabled.

PCI VGA USWC/Video Frame B6fferhis option tEnabled to enable the USWC attribute and improve video performance when a PCI video adapter is installed. However, VGA card drivers may not behave correctly when this option is seEtwabled. The settings areDisabled or Enabled. The Optimal and Fail-Safe default settings Disabled.

Optional ROM

The Merlin PCI Pentium Pro motherboard has an empty option ROM socket near the ISA expansion slots. See page 4 for the exact location of this ROM socket. You can install a 32 KB ROM in this socket. The starting memory address of this ROM can be either C000h (only if this computer does not have a VGA controlle), C800h, D000h, or D800h. The following three Chipset Setup options configure the option ROM only if you have installed a ROM chip in the option ROM socket.

Optional ROM Decode This option specifies the starting address of an adapter ROM to be decoded. The settings are C000h, C800h, D000h, D800h, or Disabled. The Optimal and Fail-Safe default setting is arbled.

Optional ROM Shadow Before Snitthis option tEnabled to permit the contents of the option ROM to be copied to RAM before being initialized by AMIBIOS during Power On Self Test. This option dose not appear if the **Optional ROM Decode**tion is set to Disabled. The settings ar Disabled or Enabled. The Optimal and Fail-Safe default settings are Disabled.

Optional ROM CachealSleet this option tenabled to allow the contents of the option ROM to be read from or written to cache memory. This option does not appear if the ptional ROM Shadow Before Init option is set to Disabled. The settings ar Enabled or Disabled. The Optimal and Fail-Safe default settings are Disabled.

Watchdog Timehis motherboard has an integrated system watchdog timer. The watchdog timer reboots the computer if the computer locks up (if there is no bus activity for several seconds).

> Set this option t*Enabled* when running applications (such as a security system) that require continuous monitoring. The computer then automatically resets after it locks up and the application can continue running with no human intervention required.

The settings ar Enabled or Disabled. The Optimal and Fail-Safe default settings Daixabled.

CPU Thermal Alarmet this option t*Enabled* to enable an alarm if the Pentium Pro CPU overheats. The settings are Enabled or Disabled. The Optimal and Fail-Safe default settings and isabled.

Chipset Setup, Continued

ISA 8 Bit I/O Recovery Tifins option specifies the length of the delay that is added to the CPU cycle between consecutive 8-bit I/O operations. The length of the delay is related to the CPU type and frequency. The settings arel Sysclock, 2 Sysclocks, 3 Sysclocks, 4 Sysclocks, 5 Sysclocks, 6 Sysclocks, 7 Sysclocks, 8 Sysclocks, or Disabled. The Optimal and Fail-Safe default settings and isabled.

ISA 16 Bit I/O Recoverity is option specifies the length of the delay that is added to the CPU cycle between consecutive 16-bit I/O operations. The length of the delay is related to the CPU type and frequency. The settings are I Sysclocks, 2 Sysclocks, 3 Sysclocks, 4 Sysclocks, or Disabled. The Optimal and Fail-Safe default settings and isabled.

Memory Hole This option specifies the location of an area of memory that cannot be addressed on the ISA bus. The settings ar Disabled, 15 MB-16 MB, or 512KB-640KB. The Optimal and Fail-Safe default settings ar Disabled.

Deturbo Frequency (MHk)s option specifies the deturbo frequency (in megahertz). The settings MHz, 8 MHz, 12 MHz, or Disabled. The Optimal and Fail-Safe default settings and sabled.

Power Management Setup

The AMIBIOS Setup options described in this section are selected by choosing the Power Management Setup icon from the Setup section on the AMIBIOS Setup main menu.

- Standard Power Management this option tEnabled to enable standard power management, including SMI support. The settings are nabled, Instant On, or Disabled. The Optimal and Fail-Safe default settings are Disabled.
- Advanced Power Management (APPMthis option tEnabled to enable APM. The settings a Enabled or Disabled. The Optimal and Fail-Safe default settings are Disabled.
- **Instant-On Timeout (Minute)**s option specifies the length of a period of system inactivity while the computer is in Full power on state. When this length of time expires, the computer enters a low power consumption state, but the computer can return to full power instantly when any system activity occurs. This option is only available if supported by the computer hardware. The settings are Disabled and 1 Min. through 15 Min in 1 minute intervals. The Optimal and Fail-Safe default settings are Disabled.
- Auxiliary Power Supply TimeouThis option specifies the power state that the auxiliary power supply enters when AMIBIOS places it in a power saving state after the specified period of display inactivity has expired. The settings ar Megakey (the power savings state determined by the Megakey keyboard controller), Standby, Suspend or Disabled. The Optimal and Fail-Safe default settings Drieabled.

Power Management Setup, Continued

DPMS Video Power Down ModeThis option specifies the power state that a DPMS (Display Power Management Specification)-compliant video subsystem enters when AMIBIOS places it in a power saving state after the specified period of display inactivity has expired. The settings as and by, Suspend or Disabled. The Optimal and Fail-Safe default settings are Disabled.

Green PC Monitor Power State soption specifies the power state that the green PC-compliant video monitor enters when AMIBIOS places it in a power saving state after the specified period of display inactivity has expired. The settings at the specified period of Disabled. The Optimal and Fail-Safe default settings are Disabled.

Hard Disk Power Down MbHis option specifies the power conserving state that the hard disk drive enters after the specified period of hard drive inactivity has expired. The settings absisabled, Standby, or Suspend. The Optimal and Fail-Safe default settings are Disabled.

Hard Disk Timeout (Minutth)s option specifies the length of a period of hard disk drive inactivity. When this length of time expires, the computer enters power-conserving state specified in Hard Disk Power DownModeoption (see the previous page). The settings are Disabled and 1 Min. through 15 Min in 1 minute intervals. The Optimal and Fail-Safe default settings are Disabled.

Power Management Setup, Continued

Standby Timeouth is option specifies the length of a period of system inactivity while in Full power on state. When this length of time expires, the computer enters Standby power state. The settings are Disabled and 1 Min. through 15 Min in 1 minute intervals. The Optimal and Fail-Safe default settings are Disabled.

Suspend Timeouth is option specifies the length of a period of system inactivity while in Standby state. When this length of time expires, the computer enters Suspend power state. The settings a Desabled and 1 Min. through 15 Min in 1 minute intervals. The Optimal and Fail-Safe default settings Daixabled.

Slow Clock Ratio option specifies the speed at which the system clock runs in power saving states. The settings are expressed as a ratio between the normal CPU clock speed and the CPU clock speed when the computer is in the power-conserving state. The settings are 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 and 1:128. The Optimal and Fail-Safe defaults: 28re

Power Management Setup, Continued

IRQ3 IRQ4 IRQ5 IRQ7 IRQ9 IRQ10 IRQ11 IRQ12 IRQ15

When set to Monitor, these options enable event monitoring on the specified hardware interrupt request line. If set Monitor and the computer is in a power saving state, AMIBIOS watches for activity on the specified IRQ line. The computer enters the full on power state if any activity occurs. AMIBIOS reloads the Standby and Suspend timeout timers if activity occurs on the specified IRQ line. The settings for each of these options Monitor or Ignore. The Optimal and Fail-Safe default settings are Disabled for all the above options excHPQ3, IRQ4, IRQ7, IRQ12, IRQ14, IRQ15The Optimal default setting for these option Monitor.

PCI/PnP Setup

Choose the PCI/PnP Setup icon from the WINBIOS Setup screen to display the PCI and Plug and Play Setup options, described below.

PCI VGA Palette Snow then this option is set tonabled, multiple VGA devices operating on different buses can handle data from the CPU on each set of palette registers on every video device. Bit 5 of the command register in the PCI device configuration space is the VGA Palette Snoop bit (0 is disabled). For example: if there are two VGA devices in the computer (one PCI and one ISA) and:

VGA Palette Snoop Bit Setting	Action
Disabled	Data read and written by the CPU is only directed
	to the PCI VGA device's palette registers.
Enabled	Data read and written by the CPU is directed to the
	both the PCI VGA device's palette registers and
	the ISA VGA device palette registers, permitting
	the palette registers of both devices to be identical

This option must be set Enabled if any ISA adapter card installed in the system requires VGA palette snooping. The Optimal and Fail-Safe default settings are Disabled.

PCI/PnP Setup, Continued

PCI Slot-1 Latency Timer

PCI Slot-2 Latency Timer

PCI Slot-3 Latency Timer

PCI Slot-4 Latency Timerese options specify the latency timings (in PCI clocks) for PCI devices installed in the four PCI expansion slots. The settings 32,e64, 96, 128, 160, 192, 224, or 248. The Optimal and Fail-Safe default settings 364.

PCI Slot-1 IRQ Preference

PCI Slot-2 IRQ Preference

PCI Slot-3 IRQ Preference

PCI Slot-4 IRQ Preference ese options specify the IRQ priority for PCI devices installed in the four PCI expansion slots. The settings are uto, IRQ3, IRQ4, IRQ5,

IRQ7, IRQ9, IRQ10, IRQ11, IRQ12, IRQ 14,nd IRQ15, in priority order. The Optimal and Fail-Safe default settings arteuto.

PCI/PnP Setup, Continued

IRQ3

IRQ4

IRO5 IRQ7

IRQ9

IRQ10

IRQ11

IRO12

IRQ14

IRQ15

These options specify the bulsatt the specified IRQ line is used on. These options allow you to reserve IRQs for legacy ISA adapter cards.

These options determine if AMIBIOS should remove an IRQ from the pool of available IRQs passed to devices that are configurable by the system BIOS. The available IRQ pool is determined by reading the ESCD NVR.AfM nore IRQs must be removed from the pool, the end user can use these options to reserve the IRQ by assigning an ISA/EISA setting to it. Onboard I/O is configured by AMIBIOS. All IRQs used by onboard I/O are configured aPCI/PnP.

IRQ12 only appears if th**Mouse Support** tion in Advanced Setup is set toisabled.

IRQ14 and 15 will not be available if the onboard Triton PCI IDE is enabled. If all IRQs are set to ISA/EISA and IRQ14 and 15 are allocated to the onboard PCI IDE, IRQ9 will still be available for PCI and PnP devices, because at least one IRQ must be available for PCI and PnP devices.

The settings ar &SA/EISA or PCI/PnP. The Optimal and Fail-Safe default settings for IRQ3 through 7 are ISA/EISA. The Optimal and Fail-Safe default settings for IRQ0 through 15Pace/PnP.

PCI/PnP Setup, Continued

Reserved Memory Size This option specifies the size of the memory area reserved for legacy ISA adapter cards. The settings ar Disabled, 16K, 32K, or 64K. The Optimal and Fail-Safe default setting in the led.

Reserved Memory Address option specifies the beginning address (in hex) of the reserved memory area. The specified ROM memory area is reserved for use by legacy ISA adapter cards.

This option dose not appear if **Reserved Memory Size** option is set t*Disabled*. The settings are C0000, C4000, C8000, CC000, D0000, D4000, D8000, or DC000. The Optimal and Fail-Safe default settings an A/A.

Peripheral Setup

Peripheral Setup options are displayed by choosing the Peripheral Setup icon from the WINBIOS Setup main menu. All Peripheral Setup options are described in this section.

- Onboard Floppy Controller this option tenabled to enable the floppy drive controller on the motherboard. The settings are *Auto* (AMIBIOS automatically determines if the floppy controller should be enabled). Enabled, or Disabled. The Optimal and Fail-Safe default settings Enabled.
- Onboard Primary/Secondary IDEThis option specifies the IDE channel used by the onboard IDE controller. The settings are Disabled, Primary, Secondary, or Both. The Optimal and Fail-Safe default settings are Disabled.
- **Onboard IDE Bus Master** this option t*Enabled* if the onboard IDE controller is a PCI bus mastering device. The settings are Enabled or Disabled. The Optimal and Fail-Safe default settings Enabled.
- **Onboard Primary Prefetch** option enables the prefetch feature for the specified IDE device attached to the onboard Primary IDE controller. The setting Master, Slave, Both, or Disabled. The Optimal and Fail-Safe default settings and isabled.
- Onboard Secondary Prefeths option enables the prefetch feature for the specified IDE device attached to the onboard Secondary IDE controller. The setting Master, Slave, Both, or Disabled. The Optimal and Fail-Safe default settings and isabled.

Peripheral Setup, Continued

Offboard PCI/ISA IDE Clarid option specifies the expansion slot that the offboard PCI or ISA IDE Controller adapter card is installed in. Tionboard Primary/Secondary IDE option must be set to is sabled if this option is set to any value exceptisabled.

The settings are Absent, ISA, Slot1, Slot2, Slot3, or Slot4. The Optimal and Fail-Safe default settings are Absent.

Offboard Primary/Secondary option specifies the IDE channel used by the offboard PCI controller. The settings are Primary, Secondary, or Both. The Optimal and Fail-Safe default settings Arenary.

Offboard PCI IDE Primary IRQ

Offboard PCI IDE Secondary TRQe options specify the PCI interrupt used by the primary and secondary IDE channels if an offboard IDE controller is installed in the computer. The settings Disabled, Hardwired, INTA, INTB, INTCorINTD. The Optimal and Fail-Safe default setting inarbled.

Serial Port1 IRQhis option specifies the IRQ (Interrupt Request Line) used by serial port 1. The setting IRQe4 or Disabled. The Optimal default setting IRQe4. The Fail-Safe default setting Disabled.

Serial Port1 Address is option specifies the base I/O port address for serial port 1. The settings 3E8h, 3F8h, or Disabled. The Optimal default setting Fi8h. The Fail-Safe default setting ViA.

Peripheral Setup, Continued

Serial Port1 FIFOhis option enables the FIFO buffer for the first serial port. The settings a Enabled or Disabled. The Optimal default settin Disabled. The Fail-Safe default setting N/s/A.

Caution

Do not enable the Serial Port 1 FIFO option if a mouse is attached to COM1.

Serial Port2 IR Phis option specifies the IRQ (Interrupt Request Line) used by serial port 1. The setting \$1860e3, IRQ 4 or Disabled. The Optimal default setting is IRQ 3. The Fail-Safe default settin Disabled.

Serial Port2 Address is option specifies the base I/O port address for serial port 2. The settings 24F8h, 2E8h, or Disabled. The Optimal default settin2F8h. The Fail-Safe default settin NiA.

Serial Port2 FIFOhis option enables the FIFO buffer for the second serial port. The settings a reabled or Disabled. The Optimal default settin **Disabled**. The Fail-Safe default setting N/s/A.

Caution

Do not enable the Serial Port2 FIFO option if a mouse is attached to COM2.

Parallel Port IROhis option specifies the IRO (Interrupt Request Line) used by the parallel port. The settings are Disabled, IRQ 5, or IRQ 7. The Optimal default setting is IRQ 7. The Fail-Safe default setting is Disabled.

Peripheral Setup, Continued

Parallel Port Address is option specifies the base I/O port address for the parallel port. The setting 328h, 278h, or Disabled. The Optimal default setting 78h. The Fail-Safe default setting 78h.

Parallel Port Modhis option specifies the parallel port mode. ECP and EPP are both bidirectional data transfer modes that adhere to the IEEE P1284 specifications. The settings are:

Setting	Description
Normal	The standard AT-compatible parallel port mode is used.
EPP	The parallel port can be used with devices that adhere to
	the Enhanced Parallel PotEPP) specification. EPP uses
	the existing parallel port signals to provide asymmetric
	bidirectional data transfer driven by the host device.
ECP	The parallel port can be used with devices that adhere to
	the Extended Capabilities Po(ECP) specification. ECP
	uses the DMA protocol to achieve data transfer rates up
	to 2.5 Megabits per second. ECP provides symmetric
	bidirectional communication.

The Optimal default settin **yos** mal. The Fail-Safe default setting **N**A.

Parallel Port DMA Chantelis option is only available if the setting for the Parallel Port Modeption is Extended or ECP. This option sets the DMA channel used by the parallel port. The settings DMA CH 1, or DMA CH 3. The Optimal and Fail-Safe default settings are Disabled.

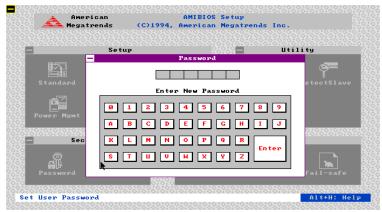
Section 2 Security

Three icons appear in this part of the WINBIOS Setup screen:

- Supervisor (Password),
- User (Password), and
- Anti-Virus (see page).

Two Levels of Passworksth the Supervisor and the User icons configure password support. If you use both, the Supervisor password must be set first.

> The system can be configured so that all users must enter a password every time the system boots or when WINBIOS Setup is executed, using either or both the Supervisor password or User password.


AMIBIOS Password Support

The Supervisor and User icons activate two different levels of password security. If

WINBIOS Setup has an optional password feature. The system can be configured so that all users must enter a password every time the system boots or when WINBIOS Setup is executed.

Setting a Password

The password check option is enabled in Advanced Setup (see pag41by choosing eithetways (the password prompt appears every time the system is powered on) oftetup (the password prompt appears only when WINBIOS is run). The password is encrypted and stored in NVRAM.

As shown on the above screen, you are prompted for a 1-6 character password. You can either type the password on the keyboard or select each letter of the password, one at a time, using the mouse. The password does not appear on the screen when typed. Make sure you write it down. If you forget it, you must drain NVRAM and reconfigure.

If You Do Not Want to Use a Password Just press <Enter> when the password prompt appears.

Changing a Password

Select the Supervisor or User icon from the Security section of the WINBIOS Setup main menu. Enter the password and press <Enter>. The screen does not display the characters entered. After the new password is entered, retype the new password as prompted and press <Enter>.

If the password confirmation is incorrect, an error message appears. If the new password is entered without error, press <Esc>. The password is stored in NVRAM after WINBIOS completes. The next time the system boots, a password prompt appears if the password function is present and enabled.

Remember the PasswordKeep a record of the new password when the password is changed. If you forget the password, you must erase the system configuration information in NVRAM (Non-Volatile Random Access Memory). See page for information about erasing system configuration information.

Anti-Virus

When this icon is selected from the Security section of the WINBIOS Setup main menu, AMIBIOS issues a warning when any program (or virus) issues a Disk Format command or attempts to write to the boot sector of the hard disk drive. The settings are Enabled or Disabled. If enabled, the following appears when a write is attempted to the boot sector. You may have to the everal times to prevent the boot sector write.

```
Boot Sector Write!!!
Possible VIRUS: Continue (Y/N)? _
```

The following appears after any attempt to format any cylinder, head, or sector of any hard disk drive via the BIOS INT 13 Hard Disk Drive Service:

```
Format!!!
Possible VIRUS: Continue (Y/N)?
```

Section 3 Utility

The following icons appear in this section of the WINBIOS Setup main screen:

Color Set Color Set sets the Setup screen colors.

Language If this feature is enabled, you can select WINBIOS

Setup messages in different languages.

Section 4 Default

The icons in this section permit you to select a group of settings for all WINBIOS Setup options. Not only can you use these icons to quickly set system configuration parameters, you can choose a group of settings that have a better chance of working when the system is having configurationrelated problems.

OriginaChoose the Original icon to return to the system configuration values present in WINBIOS Setup when you first began this WINBIOS Setup session.

Optimal

You can load the optimal default settings for the WINBIOS by selecting the Optimal icon. The Optimal default settings are best-case values that should optimize system performance. If NVRAM is corrupted, the Optimal settings are loaded automatically.

Fail-Safe

You can load the Fail-Safe WINBIOS Setup option settings by selecting the Fail-Safe icon from the Default section of the WINBIOS Setup main menu.

The Fail-Safe settings provide far from optimal system performance, but are the most stable settings. Use this option as a diagnostic aid if the system is behaving erratically.

3 Programming Flash ROM

All versions of the Merlin PCI motherboard use Flash EPROM to store the system BIOS. The advantage of Flash EPROM is the EPROM chip does not have to be replaced to update the BIOS. The end user can actually reprogram the BIOS, using a ROM file supplied by American Megatrends.

Programming the Flash EPROM

Step	Action
1	Turn power off. Make sure the computer has a working
	speaker.
2	Insert the floppy disk with the \$735P.ROM filled drive A:.
3	Press and hold the <ctrl> and <home> keys down while</home></ctrl>
	turning the power on. Continue to hold the <ctrl> and</ctrl>
	<home> keys down until the access light on the floppy</home>
	drive comes on. It may take 10 seconds or more before th
	light turns on.
4	Release the <ctrl> and <home> keys. AMIBIOS issues a</home></ctrl>
	series of beep codes that indicate that the system BIOS
	ROM file is being updated.
5	When the flash ROM has successfully been programmed,
	the computer will reboot.
6	When the computer reboots, check the BIOS Release text
	at the bottom of the first boot screen to make sure that the
	correct BIOS has been used.
7	The error message
	NVRAM checksum bad, NVRAM cleared
	will appear during the first boot after a successful BIOS
	ROM update. This message indicates that the NVRAM
	area in the system BIOS has been cleared. AMIBIOS will
	reconstruct the NVRAM area before the computer boots
	completely, so you can safely ignore this message.

Programming the Flash ROM, Continued

Bootblock Action hen you reprogram from system boot, the bootblock code:

> Reads S735P.ROM from the root directory of the floppy disk in drive A:.

Erases the Flash EPROM.

Programs the Flash EPROM with the data read from the floppy disk in drive A:.

Generates a CPU reset, rebooting the computer.

The bootblock part of the Flash EPROM is not programmed. Should you inadvertently open the disk drive door or turn power off to the computer while programming the Flash EPROM, the bootblock will be unaffected. Simply turn power back on and begin the Flash ROM programming process again.

S735P.ROM

S735P.ROM resides on a floppy disk and contains the updated main BIOS code. American Megatrends will provide this file when the AMIBIOS for the Merlin PCI ISA motherboard must be updated.

S735P.ROMoust be present in the root directory of the floppy disk before the onboard Flash EPROM can be reprogrammed. The file that has the main BIOS code must be named S735P.ROM.

Programming the Flash ROM, Continued

Beep Codes

The bootblock code produces a series of beeps during Flash ROM programming to: signify completion of a step (as shown on the previous page), or to signal an error.

Error beeps are arranged in a coded sequence and have different meanings depending on when they occur. The error beep codes and when they can occur are:

Number of	Description
Beeps	
1	Insert diskette in floppy drive A:.
2	The AMIBOOT.ROM file was not found in the root
	directory of the diskette in floppy drive A:.
3	Base memory error.
4	Flash program successful.
5	Floppy read error.
6	Keyboard controller BAT command failed.
7	No Flash EPROM detected.
8	Floppy controller failure.
9	Boot Block BIOS checksum error.
10	Flash erase error.
11	Flash Program error.
12	AMIBOOT.ROM file size error.
Continuou	Flash Programming successful. Turn power off. Then
S	turn power on again to restart.
beep	

Bootblock Code Checkpoint Codes

Code	Description
E0h	Verify the Boot Block BIOS checksum. Disable the interna
	cache, DMA, and interrupt controllers. Initialize the system
	timer. Start memory refresh.
E1h	Initialize the chipset registers. Set the BIOS size to 128K.
	Make the 512 KB base memory available.
E2h	Test the base 64 KB of system memory. Send the BAT
	command to the keyboard controller. Make sure that <ctr< td=""></ctr<>
	<home> was pressed. Verify the system BIOS checksum.</home>
E3h	The system BIOS is good. Transfer control to the BIOS.
E4h	Start the memory test.
E5h	The memory test is over. Initialize the interrupt vector table
E6h	Initialize the DMA and interrupt controllers.
E7h	Determine the CPU internal clock frequency.
E8h	Initialize the I/O chipset, if any.
E9h	Program the CPU clock-dependent chip set parameters.
EAh	Enable the timer and the floppy diskette interrupt. Enable
	the internal cache. Copy the boot block BIOS and pass
	control to the boot block BIOS in the 0000h segment.
EDh	Initialize the floppy drive.
EEh	Look for a diskette in drive A:. Read the first sector of the
	diskette.
EFh	Floppy read error.
F0h	Search for AMIBOOT.ROM in the root directory of the
	floppy diskette in drive A:.
F1h	The AMIBOOT.ROM file is not in the root directory.
F2h	Read the FAT table. Analyze the FAT to find the clusters
	occupied by the AMIBOOT.ROM.
F3h	Start reading the AMIBOOT.ROM file, cluster by cluster.
F4h	The AMIBOOT.ROM file is not the correct size.
F5h	Disable the internal cache. Raise the Vpp. Enable Flash
	write and reset the Flash ROM.
FBh	Detect the flash type.
FCh	Start erasing flash blocks.
FDh	Program the Flash ROM in the E0000-EFFFFh region.
FEh	Start programming Flash at F0000-FFFFF region.
FFh	Flash programming is successful. The computer reboots.

4 Deleting a Password

If you forget the passwords you set up through WINBIOS Setup, the only way you can restart the computer is to erase the system configuration information where the passwords are stored. System configuration data is stored in CMOS RAM, a type of memory that consumes very little power.

Erase Old Password You can drain CMOS RAM power via J33 on the motherboard. J33a 2-pin berg that is normally always OPEN. Perform the following steps to erase the old password.

Important

Make sure you are properly grounded before performing the following procedure. You must be certain that no electrostatic discharge (ESD) occurs. ESD can ruin your motherboard. Wear an antistatic wristband attached to a ground. See "Avoid Static Electricity" on the following page.

Step	Action
1	Turn the computer power off and remove the computer
	cover.
2	Place a shorting bridge on J33.
3	Turn on computer power for about 10 seconds.
4	Turn the computer off again.
5	Remove the shorting bridge from J33.
6	Turn on computer power again.
	Since you drained power from CMOS RAM, all system configuration information has been erased. You must now re-enter the system configuration information by running WINBIOS Setup.

Avoid Static Electricity

Static electricity can damage the motherboard and other computer components. Keep the motherboard in the anti-static bag until it is to be installed. Wear an anti-static wrist grounding strap before handling the motherboard. Make sure you stand on an antistatic mat when handling the motherboard.

Avoid contact with any component or connector on any adapter card, printed circuit board, or memory module. Handle these components by the mounting bracket.

Index

Index

Color Set, 65
COM1, 24
COM2, 24
Configure CPU, 6 Configuring System, 32
Conflicts, 24
Connectors, 17
Floppy disk, 26
IDE Activity Indicator, 23
IDE Hard Disk Drive, 29
Keyboard, 20
Power supply, 19
Reset Switch, 22
Serial ports, 24
SIMM, 14
Speaker, 22
Turbo LED, 23
CPU
Install, 10
CPU clock multiplier, 8
CPU Fan, 9
CPU Thermal Alarm, 48
CPU Voltage, 7
D
Date/Time, 36
Default, 65
Deturbo Frequency (M)H49
Dimensions, 2
DMA, 1
Using on ISA bus, 1
DPMS Video Power Down
Mode, 51
DRAM Integrity (Parity/ECC,
46
DRAM Speed (ns, 45
DRAM Speed (ns), 12

E	
Enhanced Parallel Port, 25, 61	IDE Activity IndicatoED, 23
ESCD NVRAM, 56	IDE drive
Extended Capabilities Port, 25,	Configuring, 37
61	IDE Hard Disk Connector, 29
_	Install Memory, 12
F	Installation, 3
Fail-Safe BIOS Setup Settings	Installing the Motherboard, 15
WINBIOS Setup, 65	Instant-On Timeout (Min)ute
Figures	50
Floppy drive cable, 26	IRQ1053,56
Floppy drive connector,	IRQ11, 53, 56
26	IRQ1253,56
Reset switch connector,	IRQ1456
22	IRQ15, 53, 56
Speaker connector, 22	IRQ3, 53, 56
Turbo LED connector, 23	IRQ4, 53, 56
First Serial Port FIFO, 60	IRQ5, 53, 56
Flash EPROM	IRQ7, 53, 56
Programming, 67	IRQ9, 53, 56
Floppy Disk Connector	
Pinout, 26	J
Floppy Drive A: and B, 36	J1 Parallel Port connector, 25
Floppy Drive connector	J10 Green PC Power, 22
Pinout, 27	J11 Mouse Connector, 21
Floppy Drive Seek, 42	J12 Serial Port 2 (COM2), 24
Floppy Drive Swap, 42	J13 Parallel Port IRQ Select, 6
	J13 Serial Port 1 (COM1), 24
G	J16 Set CPU Voltage, 7
Green PC Monitor Power	J19, J20 Set CPU External
State, 51	Speed, 8
	J2 IDE Connector
Н	Primary, 29
Hard Disk Drive Capacity, 38	J2 Pinout, 30
Hard Disk Drive Parameters,	J20, 40
38	J28 CPU Clock Multiplier, 8
Hard Disk Drive Type D:, 37	J3 and J22, Configure 3.3V
Hard Disk Power Down Mode,	CPU Power, 6
51	J31 PS/2 Mouse IRQ, 21
Hard Disk Timeout (Min,ute	J32 Reset Switch Connector,
51	22
Height restrictions, 2	J33 Erase Password, 71
Hit Message Display,	J34 Turbo LED connector, 23
41	J35 Speaker Connector, 22
74 Merlin PCI Motherboard User's Gu	

J36 IDE Indicator LED, 23 J37 Keyboard Lock connector, 23 J4 CPU Fan, 9 J4 Secondary IDE Controller, 30 J6 Floppy Connector, 26 J7 pinout, 31 K Keyboard, 40 Keyboard connector, 20	Offboard PCI/ISA IDE Card, 59 Offboard Primary/Secondary, 59 Onboard Adapters, 24 Onboard Floppy Controller, 58 Onboard I/O, 1 Onboard IDE Bus Master, 58 Onboard Primary Prefetch, 58 Onboard Primary/Secondary IDE, 58
L L1/L2 Cache, 42 Landing Zone, 38 Language, 65 M Memory Reporting, 12 Memory Hole, 49	Onboard Secondary Prefetch, 58 Optimal default settings WINBIOS Setup, 65 Optional ROM Cacheable, 48 Optional ROM Decode, 47 Optional ROM Shadow Before Init, 48 Original, 65 OS/2 Compatible Mode, 41 Overview, 1
Monitor, 40 Motherboard Dimensions, 2 Height restrictions, 2 Installing, 15 Mouse Cable, 21 Mouse Support, 40 Msoue Support, 21	P P3 Pinout, 20 Parallel Port, 25 Parallel Port Address, 61 Parallel Port DMA Channel, 61 Parallel Port Mode, 61 Password Deleting, 71
Num Lock key, 41 Number of Cylinders, 38 Number of Heads, 38 Number of Sectorss, 38 NVRAM, 33 O Offboard PCI IDE Primary IRQ, 59 Offboard PCI IDE Secondary IRQ, 59	Password Check, 41 Password Support Levels of, 62 PCI 2.1 Compliance, 1 PCI Slot-1 IRQ Preference, 55 PCI Slot-2 IRQ Preference, 55 PCI Slot-2 Latency Timer, 55 PCI Slot-3 IRQ Preference, 55 PCI Slot-4 Latency Timer, 55 PCI Slot-4 Latency Timer, 55 PCI Slot-4 Latency Timer, 55 PCI VGA Palette Snoop, 54

Index 75

PCI VGA USWC/Video Frame	Security, 62
Buffer, 47	Serial port
PCI/PnP Setup, 54	Pinout, 24
Peripheral Setup, 58	Serial Port1 Address, 59
Pinout	Serial Port1 IRQ, 59
Parallel Port, 25	Serial Port2 FIFO, 60
Power supply, 20	Serial Port2 IRQ, 60
Primary IDE connector, 30	Set CPU External Speed, 8
Serial ports, 24	Shadow C800,16K, 44
Pinouts	Shadow CC00,16K, 44
IDE Activity Indicator, 23	Shadow D000,16K,44
Keyboard lock, 23	Shadow D400,16K, 44
P1 Power Supply, 19	Shadow D800, 16K, 44
P2 Power Supply, 19, 20	Shadow DC00,16K, 44
Reset Switch, 22	SIMM Part Numbers, 13
Serial ports, 24	SIMMs
Turbo LED, 23	Installing, 14
Power Management Setup, 50	Part numbers, 13
Power Supply, 18	Selecting, 13
Connecting, 18	Slow Clock Ratio, 52
Pinouts, 19	SMI, 46
Power Supply Connectors, 19	Speaker Cable Connector, 22
Pri Master, Pri Slave, Sec	Standard Power Management
Master, Sec Slave, 37	50
Primary Display, 40	Standard Setup, 36
PS/2 Mouse IRQ, 21	Standby Timeout, 52
PS/2 mouse support, 40	Static Electricity, 5, 72
0	Suspend Timeout, 52
Q	System BIOS Cacheable, 43
Quick Boot, 42	System Keyboard, 40
R	System Management
	Interface, 46
Reporting Memory, 12	System memory, 12
Reserved Memory Address,	т
57	T
Reserved Memory Size, 57	Tables
Reset Switch Connector, 22	Floppy pinout, 27
Resource conflicts, 24	Hard Disk Drive Types, 39
S	I/O conflicts, 24
S735P.ROM, 68	Memory parameters, 13
SCSI drive	P1 Pinout, 19
Configuring, 37	P2 Pinout, 19, 20
Secondary IDE Controller, 30	Serial port pinout, 24

Speaker connector pinout, 22 Twist in floppy cable, 27 Testing System, 32 Turbo LED, 23 Typematic Rate, 40

U

Unpack the Motherboard, 5 Utility, 65

٧

Video Shadow C000, 32K, 44

W

Wait for <F1> If Error, 41 Watchdog Timer, 48 WINBIOS Setup, 33 Write Precompensation, 38

Index 77