SUPER 286 BABY MAINB(OARD 12 MIIz ZERO WAIT

TABLE OF CONTENTS

Specifications 1
How to Set up Your 286 Motherboard 2
Installation 13
EMS Driver Set-up 15
EMS Driver Preparation 17
Connector Pinouts 21
I/O Channels 25
System Block Diagram 27
Memory Address Range 28
IBM PC ${ }^{\mathrm{TM}}, \mathrm{PC} / \mathrm{XT}^{\mathrm{TM}}, \mathrm{PC} / \mathrm{AT}^{\mathrm{TM}}$ are registered trademarks of International Business Machines Corp.

SPECIFICATIONS

* 6 or 12 MHz 80286 selectable by keyboard or by hardware switch, 80286-12 CPU.
* 4MB high-speed memory standard
* 16 MB expandable in the protected virtual address mode
* 2 sockets for PHOENIX, AWARD, ERSO or AMI BIOS (any BIOS fully compatible with IBM $^{\mathrm{TM}}$ BIOS)
* $8 \mathrm{I} / \mathrm{O}$ expansion slots
* Socket for 80287 numeric processor
* CMOS clock and calendar circuit
* Battery on-board (easily serviced, easily replaced)
* 6 custom chips set used to reduce total ICs
* EMS control circuit
* 24-bit addressing and 16 -bit data pathing capabilities
* 16-level interrupt
* 7-channel direct memory access (DMA)
* 3-programmable timers
* Speaker/keyboard connector
* StandardAT ${ }^{\text {TM }}$ power supply connector
* Small $\mathbf{A T}^{\text {TM }}$ dimensions
* High temperature burned-in
* 0 -wait state or 1 -wait state selectable

How to Set Up Your 286 Motherboard

A. BIOS ROM

1. BIOS ROM (Lo) is inserted into ROM1.
2. BIOS ROM (Hi) is inserted into ROM2.

Figure 1
3. When ROM type 27128 is used, DIP switch -5 is set to ON.
4. When ROM type 27256 is used,

DIP switch -5 is set to OFF

Figure 2

B. KEYBOARD BIOS

1. 8742 with keyboard BIOS programmed in it is inserted into the location marked "8742".

2. When an AWARD type keyboard BIOS (switchable by using port 22) is used, JP3 is set to CLOSE,
3. When a PHOENIX type keyboard BIOS (switchable by using Port 15) is used, JP1 is set to CLOSE

C. DRAM

1. A total of $8(0-7)$ modes are available depending on memory sizes, for insertion of DRAMs. The figures below show the methods of DRAM insertion. When 4164 or 41256 DRAM is used, the DRAM is inserted into the 16 -pin side. When 421000 DRAM is used, it is inserted into the 18 -pin side.

Figure 5

Figure 6
MODE SETTINGS

Figure 7

2. MODE 0

A total of 18 DRAMs(41256-8) are inserted onto BANK0. The DIP switches $-6,-7,-8$ are each set to ON. In MODE 0 , the memory location is $00000-7$ FFFFH and the memory size is 512 KB .

3. MODE 1

A total of 18 DRAMs (41256-8) are inserted onto BANK 0 , and a total of 18 DRAMs (4164-8) are inserted onto BANK 1. The DIP switches $-6,-7$, and -8 are set to ON, ON, and OFF respectively. In MODE 1, the memory location is $00000-9 F F F F H$ and the system memory size is 640 KB .
4. MODE 2

> A total of 18 DRAMs $(41256-8)$ are inserted onto BANK 0, and a total of 18 DRAMs $(41256-8)$ are inserted onto BANK 1 . The DIP switches $-6,-7$, and -8 are set to ON, OFF and ON respectively. In MODE 2 , the memory locations are $00000-9 \mathrm{FFFFH}$ and $10000 \mathrm{H}-15 \mathrm{FFFFH}$. System memory size is 640 KB and expansion memory size is 384 KB .

5. MODE 3

A total of 18 DRAMs(41256-8) are inserted onto BANK 0 and a total of 18 DRAMs (41256-8) are inserted onto BANK 1. The DIP switches $-6,-7$, and -8 are set to ON, OFF and OFF respectively. In MODE 3, the memory location is $00000-9$ FFFFH and the system memory size is $640 \mathrm{~KB}+\mathrm{EMS}(384 \mathrm{~KB})$. The EMS $(384 \mathrm{~KB})$ memory can be used as an EXPAND memory with a capacity of $16 \mathrm{~KB} \times 24$ pages, by using a SUNTAC EMS driver program.

6. MODE 4

A total of 18 DRAMs (421000-8) are inserted into BANK 0. The DIP switches $-6,-7$, and -8 are set to $\mathrm{OFF}, \mathrm{ON}$ and ON respectively. In MODE 4, the memory locations are 00000 - 9FFFFH and $100000 \mathrm{H}-25 \mathrm{FFFFH}$ and the system memory size is $640 \mathrm{~KB}+1,408 \mathrm{~KB}$.

7. MODE 5

A total of 18 DRAMs(421000-8) are inserted onto BANK 0. The DIP switches $-6,-7$ and -8 are set to OFF, ON, and OFF respectively. In MODE 5, the memory location is 00000 - 9FFFFH; the system memory size is $640 \mathrm{~KB}+$ EMS $(1,408 \mathrm{~KB})$. The EMS $(1,408 \mathrm{~KB})$ memory can be used as an EXPAND memory with a capacity of $16 \mathrm{~KB} \times 88$ pages, by using a SUNTAC EMS driver program.
8. MODE 6

> A total of 18 DRAMs $(421000-8)$ are inserted onto BANK 0 and a total of 18 DRAMs ($421000-8$) are inserted onto BANK 1 . The DIP switches $-6,-7$ and -8 are set to OFF, OFF and ON respectively. In MODE 6 , the memory locations are $00000-9 \mathrm{FFFFH}$ and $100000 \mathrm{H}-45 \mathrm{FFFFH}$; the system memory size is $640 \mathrm{~KB}+3,456 \mathrm{~KB}$.
9. MODE 7

A total of 18 DRAMs ($421000-8$)are inserted
onto BANK 0 and a total of 18 DRAMs $(421000-8)$
are inserted onto BANK 1 . The DIP switches
$-6,-7$ and -8 are set to OFF, OFF and OFF
respectively. In MODE 7, the memory location
is $00000-9 F F F F H$ and the system memory size
is $640 \mathrm{~KB}+$ EMS $(3,456 \mathrm{~KB})$. The EMS $(3,456 \mathrm{~KB})$
memory can be used as an EXPAND memory with
a capacity of $16 \mathrm{~KB} \times 216$ pages, by using a
SUNTAC EMS driver program.

D. MONITOR TYPE

1. When a color monitor is used, DIP switch -2 is set to ON .
2. When a monochrome monitor is used, DIP switch -2 is set to OFF.

Figure 9

E. CLOCK SPEED SWITCHING

1. When switching speeds externally:

A mechanical switch is installed onto JP7, JP7 in the OPEN state provides Low speed, when CLOSED, it provides High speed.
2. When JP7 is OPEN, the clock speed can be switched by using the keyboard. When using AWARD BIOS, keys CTRL, ALT and (minus) are pressed simultaneously to switch to High speed. Keys CTRL, ALT and + (plus) are pressed simultaneously to switch to Low speed.
3. If the power is turned on while JP7 is OPEN, it will turn to Low speed. If JP7 is CLOSED; it will invalidate the keyboard operation and will switch to High speed at all times.
4. When using PHOENIX BIOS, keys CTRL ALT and \square are pressed simultaneously to switch speeds.

F. EMS PORT ADDRESS

1. When using $098-09 \mathrm{FH}$ as the EMS Port Address, DIP switch -4 is set to OFF. The SUNTAC EMS driver program setting is used at this point.
2. When using 0E8 - 0EFH as the EMS Port Address. DIP switch -4 is set to ON. The SUNTAC EMS driver program setting is used at this point.

Figure 11

G. RESET SWITCH

A mechanical switch is installed onto JP6.
When JP6 is OPEN, the CPU will run; when JP6 is CLOSED. the CPU will be reset.

H. MAIN MEMORY WAIT STATE SELECTION

A mechanical switch is installed onto JP5.
When JP5 is OPEN, the setting will be one wait state. When JP5 is CLOSED, the setting will be zero wait state.

INSTALLATION

Peripherals required:

1) 286 Motherboard
2) IBMAT ${ }^{\text {TM }}$ power supply or compatible equivalent
3) IBM $^{\mathrm{TM}}$ monochrone/graphics display board, color card, EGA card or compatible equivalent
4) IBM $^{\mathrm{TM}}$ keyboard or compatible equivalent
5) Monochrome, color, or EGA monitor

Procedures:

1) Connect power supply connectors to $P 8$ as marked.
2) Plug in keyboard connector to the keyboard receptical (J22) at the back.
3) Install monochrome or color graphic display board in expansion slot 1 or 7 .
4) Select monochrome or color at DIP switch -2 .
5) Connect monitor cable to the display board.
6) Make sure "LOW BYTE" or "EVEN BYTE" BIOS is on IC23.
7) Make sure "HIGH BYTE" or "ODD BYTE" BIOS is on IC33.
8) Set the RAM size as follows by DSP1: \#6-8.

\#8	\#7	\#6	MODE	SIZE
ON	ON	ON	0	512 KB
OFF	ON	ON	1	640 KB
ON	OFF	ON	2	$640 \mathrm{~KB}+384 \mathrm{~KB}$
OFF	OFF	ON	3	$640 \mathrm{~KB}+$ EMS $(384 \mathrm{~KB})$
ON	ON	OFF	4	$640 \mathrm{~KB}+1408 \mathrm{~KB}$
OFF	ON	OFF	5	$640 \mathrm{~KB}+$ EMS $(1048 \mathrm{~KB})$
ON	OFF	OFF	6	$640 \mathrm{~KB}+3456 \mathrm{~KB}$
OFF	OFF	OFF	7	$640 \mathrm{~KB}+$ EMS $(3456 \mathrm{~KB})$

9) For those which have the IBM PC/AT ${ }^{\text {TM }}$ chasis or compatible equivalent, plug in the speaker connector to SP, and the "Power LED and EXT LOCK" connector to J20 at the front, and the "TURBO LED" connector to JP8.
10) Turn on the monitor.
11) Turn on the power supply.

EMS DRIVER SET-UP

1. Boot your $\mathrm{PC}^{\mathrm{TM}}$ system by using $\mathrm{DOS}^{\mathrm{TM}}$ and the system will prompt you with A>.
2. Copy the SEMS.SYS file onto your DOSTM diskette.
3. Type:

> COPY CON CONFIG.SYS < Return > DEVICE = SEMS.SYS /M:xxx /P:xxxx /I:xxx < Return > ^Z < Return >
where $\mathrm{M}: \mathrm{xxx}=$ System memory size, default is 640 KB .

$$
P: x x x x=\underset{\text { default automatic. }}{\text { EMS Physical page segment address, }}
$$

I:xxx $=$ EMS Port address E8H or 98 H .

The screen will display as follows:
1 File(s) copied
A>
4. Reboot your system. The following screen will appear:

```
************************************************
* SUNTAC 62 Chip Set EMS Driver Rev. 1.00 *
* (C) Copyright SUN ELECTRONICS CORP. 1987*
EMS DRIVER INSTALL TOTAL PAGES: }x\timesx\times
EMS PAGE SEGMENT: }x\timesx\timesx
EMS PORT ADDRESS: }x\timesx\timesx
A>
```

5. You can run RAMBANK SOFTWARE like VD.SYS, PB.COM, or RAMTEST.

Example:

If 384 K has been set as the virtual disk, type in the command line as follows:

COPY CON CONFIG.SYS <Enter> DEVICE = SEMS.SYS <Enter>
DEVICE = VD.SYS /384/ <Enter>
${ }^{\wedge}$ Z <Enter>

Note: 1. The EMS software supports SEMS, SEMS4, SEMS5.
2. If you have VGA \& ARCNET in your system, you probably need to set DEVICE-SEMS5.SYS/ P:CCOO/.

INSTRUCTION FOR EMS
 DRIVER PREPARATION

1. After the power is turned on, and before DRAM begins refreshing, an initial value needs to be written into EMS Register R0. (This writing should done within BIOS ROM.)

Initial values
(1) Write 9 DH when I/O port address is E 8 H .
(2) Write 93 H when I / O port address is 98 H .
2. When the data has been written into EMS Registers R0-R7, Bit 7 in R0 has to be read in order to confirm whether the Register contents have been transferred from DADR to HADA.
(1) When Bit 7 in R0 is 1, the transfer has yet to be achieved.
(2) When Bit 7 in R0 is 0, the transfer has been achieved.
3. The system memory size in the EMS Register should not be set at any value larger than $640 \mathrm{~KB}(\mathrm{~A} 0 \mathrm{H})$.
4. The segment start address in EMS Register R3 should not be set at any value smaller than the system memory size (R2).
5. When setting the page numbers of banks 0-3 in EMS Registers R4-R7, the numbers should correspund to the page numbers counted, by 16 KB urits. from the DRAM address $0000: 000 \mathrm{H}$.

Example:
When EMS has a system memory size of 640 KB and the usable page head is to be set:

$$
640-16=40(28 \mathrm{H})
$$

Therefore, 28 H is set as the page head.
Incidentally, a physical page can be releised by setting its corresponding bank at ().
6. The banks $0-3$ in EMS Registers $\mathrm{R}+\mathrm{R} 7$ are aluavs in correspondence to physical pager 0-3
7. When the system memory size is 1 MB (as houn in the Memory Address Setting 3 on page 28) the setting of EMS page No. at 40 H will result in the production of an image from the memory 0000 : 0000 H .
8. EMS maximum pages Nos. are 216 pages at +MB . The memory size that can be used with $\operatorname{DOS}^{\mathrm{TM}}$ is 640 KB .

EMS INTERFACE

EMS Port Address

EMS98/E8	Location	Description
"L"	E 8 H	Access to 80287 is impossible at E8-EFH.
"H"	98 H	Access to 74 LS612 is impossible at 98 -9FH.

EMS Registers

		D7	D6	D5	D4	D3	D2	D1	DO	Description
R0	Variable port address. Transter flag (Read) RO Read enable (Write)	$\begin{aligned} & T / R \\ & \text { flag } \end{aligned}$	Variable port address							T/R flag Read
			A9	A8	A7	A6	A5	A4	A3	1:Transfer yet to be done 0 Transfer done Write 1:Read possible 0 Read impossible
R1	Reserved									
R2	System memory size	A19	A18	A17	A16	A15	A14	fixe	0	Read impossible (AOH 00000-9FFFFH)
$R 3$	Segment start address	A19	A18	A17	A16	A15	A14	fixe	0	Read impossible (COH segmentC000H)
R4	Bank 0	P7	P6	P5	P4	P3	P2	P1	PO	Read impossible
R5	Bank 1	P17	P16	P15	P14	P13	P12	P11	P10	Read impossible
R6	Bank 2	P27	P26	P25	P24	P23	P22	P21	P20	Read impossible
R7	Bank 3	P37	P36	P35	P34	P33	P32	P31	P30	Read impossible

CONNECTOR PINOUTS

1. POWER SUPPLY CONNECTOR (P8)

PIN	DESCRIPTION
1	POWER GOOD
2	+5 V DC
3	+12 V DC
4	-12 V DC
5	GROUND
6	GROUND
7	GROUND
8	GROUND
9	$-5 V$ DC
10	+5 VDC
11	+5 V DC
12	+5 V DC

2. SPEAKER CONNECTOR (J19)

PIN	DESCRIPTION
1	SPEAKER DATA OUT
2	KEY
3	GROUND
4	+5 V DC

3. KEYBOARD SWITCH

 \& LED CONNECTOR (J20)| PIN | DESCRIPTION |
| :---: | :---: |
| 1 | LED POWER |
| 2 | KEY |
| 3 | GROUND |
| 4 | KEYBOARD INHIBITOR |
| 5 | GROUND |

4. KEYBOARD CONNECTOR (J22)

PIN	DESCRIPTION
1	KEYBOARD CLOCK
2	KEYBOARD DATA
3	SPARE
4	KEYBOARD GROUND
5	$+5 V$ DC

5. RESET CONNECTOR (JP6)

PIN	DESCRIPTION
1	RESET IN
2	GROUND

6. HIGH SPEED LED CONNECTOR(TUBLED)

PIN	DESCRIPTION
1	+ ANODE
2	- CATHODE

NOTES:

1) XTAL SET $20 \mathrm{MHz}=\mathrm{LED} \mathrm{ON}$
2) XTAL SET $12 \mathrm{MHz}=$ LED OFF

I/O CHANNELS

The following figures show the location and the numbering of the I/O channel connectors. These connectors consist of eight pin and six 36-pin edge connector sockets.

REAR PANEL

-MEM CS16	ID1	C1I	SBHE
-I/O CS16	ID2	C2I	LA23
IR 10	ID3	C3I	LA22
IR 11	ID4	C4I	LA21
IR 12	ID5	C5I	LA20
IR 15	ID6	C6I	LA19
IR 14	ID7	C7I	LA18
-DACK 0	ID8	C8I	LA17
DRA 0	ID9	C9I	MEMK
-DACK 5	ID 10	C10I	MEMW
DRQ 5	ID) 11	C11I	SD08
-DACK 6	ID 12	C12I	SD09
DRQ 6	ID13	C13I	SD10
-DACK 7	ID14	C14I	SD11
DRQ 7.	ID15	C15I	SD12
$+5 \mathrm{~V}$	ID16	C16I	SD13
-MASTER	ID17	C17I	SD14
GND	ID18	C18I	SD15

REAR PANEL

GND	IB1	A1I	- $/$ / OCHCN
RESET DRV	IB2	A2I	SD7
$+5 \mathrm{~V}$	IB3	A3I	SD6
IR9	IB4	A4I	SD5
-5V	IB5	A5I	SD4
DRQ	IB6	A6I	SD3
-12V	IB7	A71	SD2
OWS	IB8	A8I	SD1
$+12 \mathrm{~V}$	IB9	A91	SD0
GND	IB10	A10I	-I/O CH RDY
-S MEMW	IB11	A11I	(1) AEN
-S MEMR	IB12	A12I	SA19
-IOW	IB13	A13I	SA18
-IOR	IB14	A14I	SA17
-DACK 3	IB15	A15I	SA16
DRQ 3	IB16	A16I	SA15
-DACK 1	IB17	A17I	SA14
DRQ 1	IB18	A18I	SA13
-REFRESH	IB19	A191	SA12
SYSCLK	IB20	A20I	SA11
IR 7	IB21	A21I	SA10
IR 6	IB22	A22I	SA9
IR 5	IB23	A23I	SA8
IR 4	IB24	A24I	SA7
IR 3	IB25	A25I	SA6
-DACK 2	IB26	A26I	SA5
T/C	IB27	A271	SA4
BALE	IB28	A281	SA3
$+5 \mathrm{~V}$	IB29	A291	SA2
OSC	IB30	A30I	SA1
GND	IB31	A31I	SA0

[^0]
SYSTEM BLOCK DIAGRAM

MEMORY ADDRESS

DRAM

NO	DIP Switch setting			Memory type		Memory size	Memory Location
	S6	S7	S8	BANK1	BANKO		
0	ON	ON	ON	NONE	256 Kbits	512KB	0-7FFFF
1	ON	ON	OFF	64 Kbits	256 Kbits	640KB	0-9FFFF
2	ON	OFF	ON	256 Kbits	256 Kbits	$640 K B+384 K B$	$\begin{array}{r} \text { б-9FFFF } \\ 100000-15 F F F F \end{array}$
3	ON	OFF	OFF	256 Kbits	256 Kbits	$\begin{aligned} & 640 K B+E M S \\ & (16 K B \times 24 \text { pages }) \end{aligned}$	0-9FFFF
4	OFF	ON	ON	NONE	1Mbits	$640 K B+1408 K B$	$\begin{array}{r} 0-9 F F F F \\ 100000 \cdot 25 \mathrm{FFFF} \end{array}$
5	OFF	ON	OFF	NONE	1Mbits	$\begin{aligned} & 640 K B+E M S \\ & (16 K B \times 88 \text { pages } \end{aligned}$	0-9FFFF
6	OFF	OFF	ON	1Mbits	1 Mbits	$640 K B+3456 K E$	$\begin{array}{r} 0-9 F F F F \\ 100000-45 F F F F \end{array}$
7	OFF	OFF	OFF	1Mbits	1Mbits	$\begin{aligned} & 640 K B+E M S \\ & (16 K B \times 216 \text { pages }) \end{aligned}$	0-9FFFF

[^0]: I/O CHANNEL PIN NUMBERING

