

Rev. A+ System Board User's Manual

> 935-G4V621-000 A69100252

Copyright

This publication contains information that is protected by copyright. No part of it may be reproduced in any form or by any means or used to make any transformation/adaptation without the prior written permission from the copyright holders.

This publication is provided for informational purposes only. The manufacturer makes no representations or warranties with respect to the contents or use of this manual and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The user will assume the entire risk of the use or the results of the use of this document. Further, the manufacturer reserves the right to revise this publication and make changes to its contents at any time, without obligation to notify any person or entity of such revisions or changes.

© 2002. All Rights Reserved.

Trademarks

Windows[®] 98 SE, Windows[®] ME, Windows[®] 2000, Windows NT[®] 4.0 and Windows[®] XP are registered trademarks of Microsoft Corporation. Intel[®], Pentium[®] III and Celeron[™] are registered trademarks of Intel Corporation. VIA CyrixIII is a registered trademark of VIA Technologies, Inc. Award is a registered trademark of Award Software, Inc. Other trademarks and registered trademarks of products appearing in this manual are the properties of their respective holders.

Caution

To avoid damage to the system:

• Use the correct AC input voltage range.

To reduce the risk of electric shock:

• Unplug the power cord before removing the system chassis cover for installation or servicing. After installation or servicing, cover the system chassis before plugging the power cord.

Battery:

- Danger of explosion if battery incorrectly replaced.
- Replace only with the same or equivalent type recommend by the manufacturer.
- Dispose of used batteries according to the battery manufacturer's instructions.

Joystick or MIDI port:

• Do not use any joystick or MIDI device that requires more than 10A current at 5V DC. There is a risk of fire for devices that exceed this limit.

FCC and DOC Statement on Class B

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio TV technician for help.

Notice:

- I. The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
- 2. Shielded interface cables must be used in order to comply with the emission limits.

Notice

This user's manual is for the G4V620-B and G4V620-N system boards. The differences between these boards are shown below.

G4V620-N	Intel 82562 and 82559 LAN controllers			
	2 onboard LAN ports			
G4V620-B	Intel 82562 LAN controller			
	I onboard LAN port			

Table of Contents

Chapter I - Introduction

1.1	Features and Specifications	7
	Hyper-Threading Technology Functionality Requirements	15
1.3	Package Checklist	16

Chapter 2 - Hardware Installation

2.1	System Board Layout	17
2.2	System Memory	19
2.3	Jumper Settings for Clearing CMOS Data	21
2.4	Jumper Settings for Selecting the CPU's Front Side Bus	23
2.5	Jumper Settings for BIOS Write Protect	24
2.6	Rear Panel I/O Ports	25
2.7	I/O Connectors	34

Chapter 3 - Award BIOS Setup Utility

3.1	The Basic Input/Output System				
	3.1.1	Standard CMOS Features	52		
	3.1.2	Advanced BIOS Features	57		
	3.1.3	Advanced Chipset Features	62		
	3.1.4	Integrated Peripherals	65		
	3.1.5	Power Management Setup	72		
	3.1.6	PnP/PCI Configurations	77		
	3.1.7	PC Health Status	79		
	3.1.8	Frequency/Voltage Control	81		
	3.1.9	Load Fail-Safe Defaults	83		
	3.1.10	Load Optimized Defaults	84		
	3.1.11	Set Supervisor Password	85		
	3.1.12	Set User Password	86		
	3.1.13	Save & Exit Setup	87		
	3.1.14	Exit Without Saving	88		
3.2	Updating	g the BIOS	89		

Chapter 4 - Supported Softwares

4.1 Desktop Management Interface	91 94
4.3 Installation Notes	102
Appendix A - Enabling Hyper-Threading Technology	g
A.I Enabling Hyper-Threading Technology	103
Appendix B - Watchdog Timer	
B.I Watchdog Timer	
Appendix C - System Error Messages	
C.1 POST Beep C.2 Error Messages	
Appendix D - Troubleshooting	
D.I Troubleshooting Checklist	. 109

Chapter I - Introduction

I.I Features and Specifications

I.I.I Features

Chipset

- Intel[®] 845GV chipset
 - Intel[®] 82845GV Graphics Memory Controller Hub (GMCH)
 - Intel® 82801 DB I/O Controller Hub (ICH4)

Processor

The system board is equipped with Socket 478 for installing one of the following supported processors.

- Intel[®] Pentium[®] 4 Processor with Hyper-Threading Technology. Refer to section 1.2 for the Hyper-Threading Technology functionality requirements - 533MHz system data bus
- Intel[®] Pentium[®] 4 processor (478-pin)
 - 533MHz system data bus
 - 400MHz system data bus
- Intel[®] Celeron[®] processor (478-pin)
 - 400MHz system data bus

System Memory

- Two 184-pin DDR SDRAM DIMM sockets
- 2.5V unbuffered PC1600 (DDR200) or PC2100 (DDR266) DDR SDRAM DIMM
- Supports maximum of 2GB system memory using 64Mbit, 128Mbit, 256Mbit or 512Mbit technology
 - Double-sided x16 DDR SDRAM DIMM is not supported

Density	64 1	Mbit	128 Mbit		256 Mbit		512 Mbit	
Density Width	X8	X16	X8	X16	X8	X16	X8	X16
Single/Double	SS/DS	SS/DS	SS/DS	SS/DS	SS/DS	SS/DS	SS/DS	SS/DS
184-pin DDR	64/128MB	32MB/NA	128/256MB	64MB/NA	256/512MB	128MB/NA	512/1024MB	256MB/NA

Expansion Slots

• I AGP slot that supports ADD (AGP Digital Display) card only

..........

- 3 PCI slots (I shared with ISA slot)
- 2 ISA slots

Onboard Graphics Features

- Graphics memory
 - Shares 512K/IMB/8MB of the system memory in DOS mode
 - Uses Dynamic Video Memory Technology (DVMT) in Windows mode
- Graphics controller
 - Core frequency of 200MHz
 - 350MHz integrated 24-bit RAMDAC
 - Analog display up to 2048x1536 @ 60Hz refresh
 - 3D setup and render engine Discrete, Triangles, Strips and fans
 - Per pixel perspective corrected texture mapping
 - Software DVD at 30fps, full screen
- 2D graphics features
 - Optimized 256-bit BLT engine
 - 32-bit alpha blended cursor
 - Programmable 3-color transparent cursor
- 3D graphics features
 - 200 megapixels/sec fill rate
 - Maximum 3D resolution: 1600x1200x32 @ 85Hz
 - Flat and Gouraud shading
 - 16- and 24-bit Z-buffering and 16- and 24-bit W-buffering
 - Vertex and programmable pixel fogging and atmospheric effects
 - Double and triple render buffer
- Software drivers
 - Windows® 98SE/2000/ME/XP
 - Windows NT® 4.0

Onboard Audio Features

- 18-bit stereo full-duplex codec with independent variable sampling rate
- High quality differential CD input
- True stereo line level outputs
- S/PDIF-out interface
- 2-channel audio output

Onboard LAN Features

- Uses 82559 fast ethernet controller (G4V620-N only)
 - Integrated IEEE 802.3, IOBASE-T and IOOBASE-TX compatible PHY
 - Glueless 32-bit PCI master interface
 - Glueless CardBus master interface
 - 128 Kbyte Flash interface
 - Thin BGA 15 mm² package
- Uses 82562 fast ethernet controller (G4V620-N and G4V620-B)
 - Basic 10/100 Client Connection. Supports 559 level cable and PHY Stats. Support for Server OS included as check item, but no Server function included
 - Same Quality Driver suits as 82559
 - Supports DMI/SNMP/WMI
 - 10/100 Auto Sensing
 - IEEE 802.3, 10BASE-T/100BASE-TX compliant physical layer interface
 - IEEE 802.3u Auto-Negotiation
 - 48-pin SSOP, 3.3V device

PCI Bus Master IDE Controller

- Two PCI IDE interfaces support up to four IDE devices
- Supports ATA/33, ATA/66 and ATA/100 hard drives
- PIO Mode 4 Enhanced IDE (data transfer rate up to 14MB/sec.)
- Bus mastering reduces CPU utilization during disk transfer
- Supports ATAPI CD-ROM, LS-120 and ZIP

IrDA Interface

The system board is equipped with an IrDA connector for wireless connectivity between your computer and peripheral devices.

USB Ports

The system board supports 6 USB ports. USB 1.1 supports 12Mb/ second bandwidth while USB 2.0 supports 480Mb/second bandwidth providing a marked improvement in device transfer speeds between your computer and a wide range of simultaneously accessible external Plug and Play peripherals.

..........

Watchdog Timer

The Watchdog Timer function allows your application to regularly "clear" the system at the set time interval. If the system hangs or fails to function, it will reset at the set time interval so that your system will continue to operate.

BIOS

- Award BIOS, Windows® 98SE/2000/ME/XP Plug and Play compatible
- Supports SCSI sequential boot-up
- Flash EPROM for easy BIOS upgrades
- 4Mbit flash memory
- Supports DMI 2.0 function

Desktop Management Interface (DMI)

The system board comes with a DMI 2.0 built into the BIOS. The DMI utility in the BIOS automatically records various information about your system configuration and stores these information in the DMI pool, which is a part of the system board's Plug and Play BIOS. DMI, along with the appropriately networked software, is designed to make inventory, maintenance and troubleshooting of computer systems easier. Refer to chapter 4 for instructions on using the DMI utility.

Compatibility

• PCI 2.2 and AC'97 compliant

Rear Panel I/O Ports (PC 99 color-coded connectors)

- Four USB 2.0/1.1 ports
- Two RJ45 LAN ports (G4V620-N only) One RI45 LAN port (G4V620-B only)
- One NS16C550A-compatible DB-9 serial port
- One DB-15 VGA port
- One SPP/ECP/EPP DB-25 parallel port
- One mini-DIN-6 PS/2 mouse port
- One mini-DIN-6 PS/2 keyboard port
- Three audio jacks: line-out, line-in and mic-in

I/O Connectors

- One CompactFlash[™] socket
- One connector for 2 additional external USB 2.0/1.1 ports
- One connector for an external serial port
- One connector for an external game/MIDI port
- Two internal audio connectors (CD-in and AUX-in)
- One S/PDIF-out connector
- One connector for IrDA interface
- Two IDE connectors
- One floppy drive interface supports up to two 2.88MB floppy drives
- Two ATX power supply connectors
- One Wake-On-LAN connector
- One Wake-On-Ring connector
- One chassis open connector
- CPU fan, system fan and second fan connectors

1.1.2 System Health Monitor Functions

The system board is capable of monitoring the following "system health" conditions.

- Monitors CPU/system temperature and overheat alarm
- Monitors Vcore/1.5V/3.3V/±5V/±12V/5VSB/VBAT voltages and failure alarm
- Monitors the fan speed of CPU fan, system fan and second fan; and failure alarm

- Read back capability that displays temperature, voltage and fan speed
- Opened chassis alarm

Refer to the "PC Health Status" section in chapter 3 and the "Winbond Hardware Doctor Utility" section in chapter 4 for more information.

I.I.3 Intelligence

Dual Function Power Button

Depending on the setting in the "Soft-Off By PWR-BTTN" field of the Power Management Setup, this switch will allow the system to enter the Soft-Off or Suspend mode.

Wake-On-Ring

This function allows the system that is in the Suspend mode or Soft Power Off mode to wake-up/power-on to respond to calls coming from an internal or external modem. Refer to "Wake-On-Ring Connector" in chapter 2 and "Power On By Ring" ("Wake-Up Event Setup" field) in the Power Management Setup section in chapter 3 for more information.

Important:

If you are using a modem add-in card, the 5VSB power source of your power supply must support \geq 720mA.

Wake-On-LAN

This function allows the network to remotely wake up a Soft Power Down (Soft-Off) PC. Your LAN card must support the remote wakeup function. Refer to "Wake-On-LAN Connector" in chapter 2 and "Wake Up On LAN" ("Wake-Up Event Setup" field) in the Power Management Setup section in chapter 3 for more information.

Wake-On-Keyboard

This function allows you to use the keyboard to power-on the system. Refer to "Power On Function" ("Onboard Super I/O Device" field) in the Integrated Peripherals section in chapter 3 for more information.

Important:

- The power button will not function once a keyboard password has been set in the "KB Power On Password" field. You must type the correct password to power-on the system. If you forgot the password, power-off the system and remove the battery. Wait for a few seconds and install it back before powering-on the system.
- The 5VSB power source of your power supply must support ≥720mA.

Wake-On-USB Keyboard

This function allows you to use a USB keyboard to wake up a system from the S3 (STR - Suspend To RAM) state. Refer to "USB KB Wake-Up From S3" in the Power Management Setup section in chapter 3 for more information.

Important:

• If you are using the Wake-On-USB Keyboard function for 2 USB ports, the 5VSB power source of your power supply must support ≥1.5A.

..................

• If you are using the Wake-On-USB Keyboard function for 3 or more USB ports, the 5VSB power source of your power supply must support ≥2A.

RTC Timer to Power-on the System

The RTC installed on the system board allows your system to automatically power-on on the set date and time. Refer to "Resume By Alarm" ("Wake-Up Event Setup" field) in the Power Management Setup section in chapter 3 for more information.

ACPI STR

The system board is designed to meet the ACPI (Advanced Configuration and Power Interface) specification. ACPI has energy saving features that enables PCs to implement Power Management and Plug-and-Play with operating systems that support OS Direct Power Management. Currently, only Windows[®] 98SE/2000/ME/XP supports the ACPI function. ACPI when enabled in the Power Management Setup will allow you to use the Suspend to RAM function.

With the Suspend to RAM function enabled, you can power-off the system at once by pressing the power button or selecting "Standby" when you shut down Windows[®] 98SE/2000/ME/XP without having to go through the sometimes tiresome process of closing files, applications and operating system. This is because the system is capable of storing all programs and data files during the entire operating session into RAM (Random Access Memory) when it powers-off. The operating session will resume exactly where you left off the next time you power-on the system.

Important: The 5VSB power source of your power supply must support ≥IA.

AC Power Failure Recovery

When power returns after an AC power failure, you may choose to either power-on the system manually, let the system power-on automatically or return to the state where you left off before power failure occurs. Refer to "PWRON After PWR-Fail" ("Onboard Super I/O Device" field) in the Integrated Peripherals section in chapter 3 for more information.

Virus Protection

Most viruses today destroy data stored in hard drives. The system board is designed to protect the boot sector and partition table of your hard disk drive.

I.2 Hyper-Threading Technology Functionality Requirements

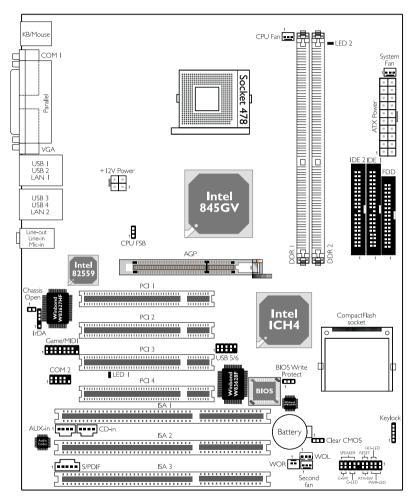
Enabling the functionality of Hyper-Threading Technology for your computer system requires **ALL** of the following platforms.

Components:

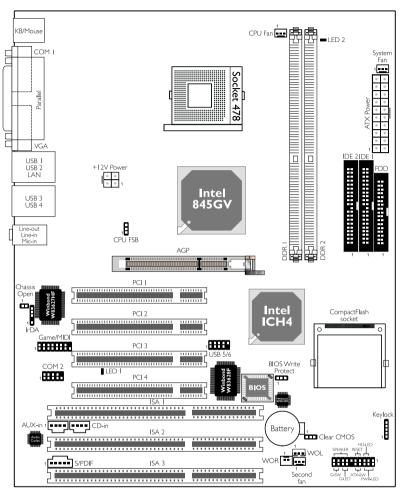
- CPU an Intel[®] Pentium[®] 4 Processor with HT Technology
- Chipset an Intel[®] chipset that supports HT Technology
- BIOS a BIOS that supports HT Technology and has it enabled
- OS an operating system that includes optimizations for HT Technology

For more information on Hyper-Threading Technology, go to: www.intel.com/info/hyperthreading.

1.3 Package Checklist


The system board package contains the following items:

- \blacksquare The system board
- ☑ A user's manual
- One card-edge bracket mounted with a serial port and a game/MIDI port


- ☑ One IDE cable for ATA/33, ATA/66 or ATA/100 IDE drives
- ☑ One 34-pin floppy disk drive cable
- ☑ One ''Main Board Utility'' CD

If any of these items are missing or damaged, please contact your dealer or sales representative for assistance.

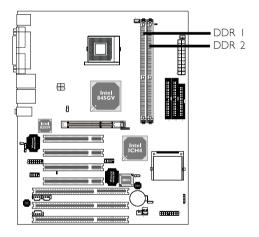
2.1 System Board Layout

G4V620-N (Supports 2 onboard LAN ports)

G4V620-B

(Supports 1 onboard LAN port)

Note:


The illustrations on the following pages are based on the mainboard that supports 2 onboard LAN ports.

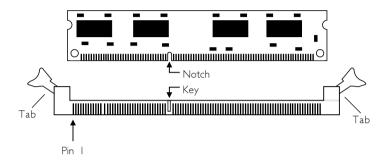
Warning:

Electrostatic discharge (ESD) can damage your system board, processor, disk drives, add-in boards, and other components. Perform the upgrade instruction procedures described at an ESD workstation only. If such a station is not available, you can provide some ESD protection by wearing an antistatic wrist strap and attaching it to a metal part of the system chassis. If a wrist strap is unavailable, establish and maintain contact with the system chassis throughout any procedures requiring ESD protection.

Hardware Installation

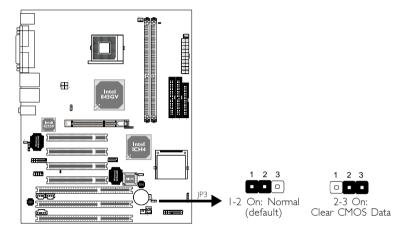
2.2 System Memory

The mainboard is equipped with two 184-pin DDR SDRAM DIMM (Dual In-line Memory Module) sockets that support 2.5V DDR SDRAM DIMM. Double Data Rate SDRAM (DDR SDRAM) is a type of SDRAM that doubles the data rate through reading and writing at both the rising and falling edge of each clock. This effectively doubles the speed of operation therefore doubling the speed of data transfer. Refer to chapter I (System Memory section) for detailed specification of the memory supported by the system board.


BIOS Setting

"Memory Frequency For" in the Advanced Chipset Features submenu of the BIOS must be set accordingly.

2.2.1 Installing the DIM Module


A DIM module simply snaps into a DIMM socket on the system board. Pin I of the DIM module must correspond with Pin I of the socket.

...................

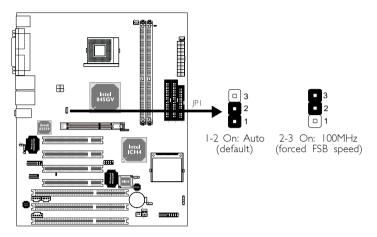
- I. Pull the "tabs" which are at the ends of the socket to the side.
- 2. Position the DIMM above the socket with the "notch" in the module aligned with the "key" on the socket.
- 3. Seat the module vertically into the socket. Make sure it is completely seated. The tabs will hold the DIMM in place.

2.3 Jumper Settings for Clearing CMOS Data

If you encounter the following,

- a) CMOS data becomes corrupted.
- b) You forgot the supervisor or user password.
- c) You are unable to boot-up the computer system because the processor's ratio/clock was incorrectly set in the BIOS.

you can reconfigure the system with the default values stored in the ROM BIOS.

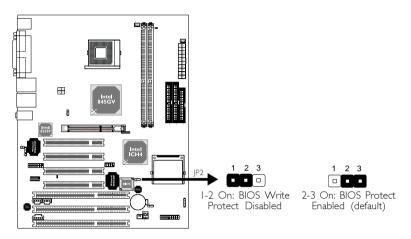

To load the default values stored in the ROM BIOS, please follow the steps below.

- I. Power-off the system.
- 2. Set JP3 pins 2 and 3 to On. Wait for a few seconds and set JP3 back to its default setting, pins 1 and 2 On.
- 3. Now power-on the system.

If your reason for clearing the CMOS data is due to incorrect setting of the processor's ratio/clock in the BIOS, please proceed to step 4.

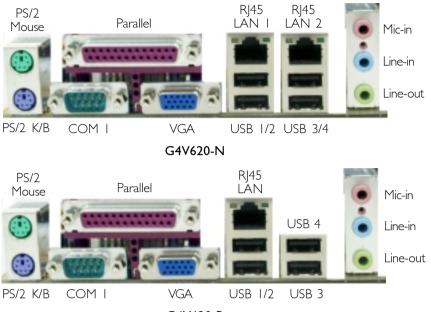
- 4. After powering-on the system, press to enter the main menu of the BIOS.
- 5. Select the Frequency/Voltage Control submenu and press <Enter>.
- 6. Set the "CPU Clock Ratio" or "CPU Host/3V66/PCI Clock" field to its default setting or an appropriate frequency ratio or bus clock. Refer to the Frequency/Voltage Control section in chapter 3 for more information.
- 7. Press <Esc> to return to the main menu of the BIOS setup utility. Select "Save & Exit Setup" and press <Enter>.
- 8. Type <Y> and press <Enter>.

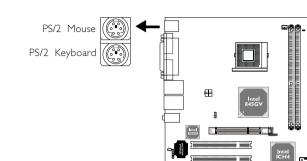
2.4 Jumper Settings for Selecting the CPU's Front Side Bus


The default setting is Auto. The system will run according to the front side bus of the CPU installed on the system board.

Important:

- If you are using a CPU whose frequency has been locked by the manufacturer, overclocking will have no effect.
- Overclocking may result to the CPU's or system's instability and are not guaranteed to provide better system performance.


2.5 Jumper Settings for BIOS Write Protect


The default setting is 2-3 On. This setting will protect the system from unnecessary updating or flashing of the BIOS. It secures the BIOS therefore any updates to it will not take effect.

2.6 Rear Panel I/O Ports

.....

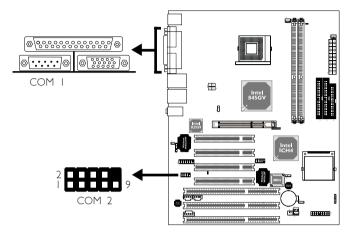
G4V620-B

2.6.1 PS/2 Mouse and PS/2 Keyboard Ports

The system board is equipped with an onboard PS/2 mouse (Green) and PS/2 keyboard (Purple) ports - both at location CN1. The PS/2 mouse port uses IRQ12. If a mouse is not connected to this port, the system will reserve IRQ12 for other expansion cards.

Wake-On-Keyboard

The Wake-On-Keyboard function allows you to use the keyboard to power-on the system. To use this function:


"Power On Function" ("Onboard Super I/O Device" field) in the Integrated Peripherals submenu of the BIOS must be set accordingly. Refer to chapter 3 for more information.

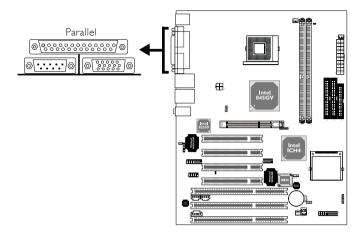
Warning:

Make sure to turn off your computer prior to connecting or disconnecting a mouse or keyboard. Failure to do so may damage the system board.

2.6.2 Serial Ports

The built-in serial ports are RS-232C asynchronous communication ports with 16C550A-compatible UARTs that can be used with modems, serial printers, remote display terminals, and other serial devices.

Connecting the Serial Ports

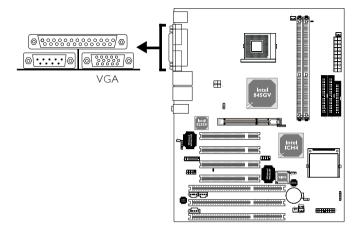

The system board is equipped with an onboard serial port (Teal/ Turquoise) for COM I at location CN4. It is also equipped with a 9-pin connector at location J2 for COM 2 serial port.

One card-edge bracket, mounted with serial and game/MIDI port cables, is provided with the system board. If you want to use the secondary serial port, connect the serial port cable to connector J2. Make sure the colored stripe on the ribbon cable is aligned with pin I of connector J2. Mount the card-edge bracket to the system chassis.

BIOS Setting

Select the serial ports' I/O address in the Integrated Peripherals submenu ("Onboard Super I/O Device" field) of the BIOS. Refer to chapter 3 for more information.

2.6.3 Parallel Port


The system board has a standard parallel port (Burgundy) at location CN7 for interfacing your PC to a parallel printer. It supports SPP, ECP and EPP.

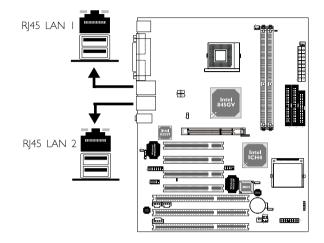
Setting	Function		
SPP (Standard Parallel Port)	Allows normal speed operation but in one direction only.		
ECP (Extended Capabilities Port)	Allows parallel port to operate in bidirectional mode and at a speed faster than the SPP's data transfer rate.		
EPP (Enhanced Parallel Port)	Allows bidirectional parallel port op- eration at maximum speed.		

BIOS Setting

Select the parallel port's mode in the Integrated Peripherals submenu ("Onboard Super I/O Device" field) of the BIOS. Refer to chapter 3 for more information.

2.6.4 VGA Port

The system board can only be used with an analog video monitor. Connect the monitor's 15-pin D-shell cable connector to the VGA port (Blue) at location CN2. If your monitor supports analog video but does not have a 15-pin D-shell connector, see your monitor dealer for the adapter or optional cable. After you plug the monitor cable into the VGA port, gently tighten the cable screws to hold the connector in place. Some monitors have a switch that chooses between analog and TTL (or digital) operation. If your monitor has such a switch, set it for analog.


BIOS Setting

Enable or disable the onboard VGA in the Advanced Chipset Features submenu of the BIOS. Refer to chapter 3 for more information.

Driver Installation

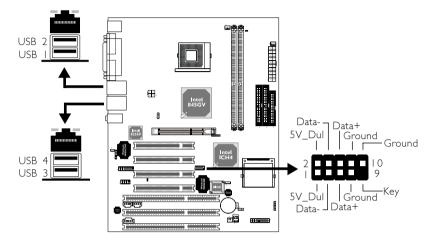
Install the "Intel LAN Drivers" contained in the provided CD into your system.

2.6.5 RJ45 Fast-Ethernet Port

Hardware Installation

The onboard LAN allows the system board to connect to a local area network by means of a network hub.

The G4V620-N system board is equipped with 2 onboard RJ45 fast-ethernet LAN ports at locations CN5 and CN6.


The G4V620-B system board is equipped with only 1 onboard RJ45 fast-ethernet LAN port at location CN5.

BIOS Setting

Enable or disable the onboard LAN in the Integrated Peripherals submenu of the BIOS. Refer to chapter 3 for more information.

Driver Installation

Install the "Intel LAN Drivers" contained in the provided CD into your system.

2.6.6 Universal Serial Bus Ports

The system board supports 6 USB ports. USB 1.1 supports 12Mb/ second bandwidth while USB 2.0 supports 480Mb/second bandwidth providing a marked improvement in device transfer speeds between your computer and a wide range of simultaneously accessible external Plug and Play peripherals.

Four onboard USB ports (Black) are at locations CN5 and CN6.

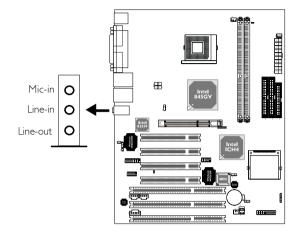
The 10-pin connector (J10) on the system board allows you to connect 2 additional USB ports. The additional USB ports, which are mounted on a card-edge bracket, will be provided as an option. If you wish to use the optional USB ports, install the card-edge bracket to the system chassis then insert the connector that is attached to the USB port cables to J10.

BIOS Setting

Enable or disable the onboard USB in the Integrated Peripherals submenu of the BIOS. Refer to chapter 3 for more information.

Driver Installation

You may need to install the proper drivers in your operating system to use the USB device. Refer to your operating system's manual or documentation for more information.


If you are using USB 2.0 devices, install the "USB 2.0 Drivers" contained in the provided CD into your system.

Wake-On-USB Keyboard

The Wake-On-USB Keyboard function allows you to use a USB keyboard to wake up a system from the S3 (STR - Suspend To RAM) state. To use this function:

"USB KB Wake-Up From S3" in the Power Management Setup submenu of the BIOS must be set to Enabled. Refer to chapter 3 for more information.

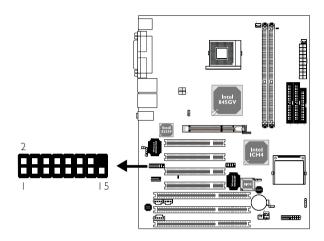
2.6.7 Audio Jacks

The system board is equipped with 3 audio jacks at location CN3. A jack is a one-hole connecting interface for inserting a plug.

• Line-out Jack (Lime)

This jack is used to connect external speakers for audio output from the system board.

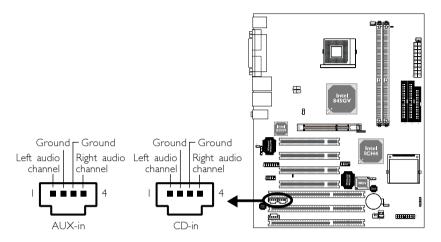
• Line-in Jack (Light Blue)


This jack can be connected to the line-out jack of any external audio devices such as Hi-fi set, CD player, AM/FM radio tuner, synthesizer, etc. Connect a stereo cable from the line-out jack of your external device to this line-in jack.

• Mic-in Jack (Pink)

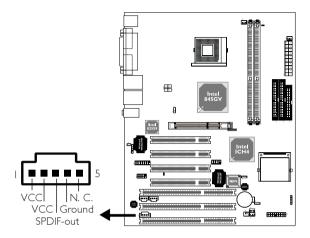
Connect a microphone to the mic-in jack.

2.7.1 Game/MIDI Port

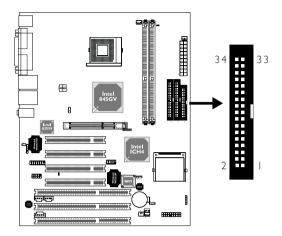

Hardware Installation

The system board is equipped with a 15-pin connector at location J4 for connecting an external game/MIDI port. One card-edge bracket, mounted with serial and game/MIDI port cables, is provided with the system board. Install the card-edge bracket to the system chassis then connect the game/MIDI port cable to connector J4. Make sure the colored stripe on the ribbon cable is aligned with pin I of connector J4.

BIOS Setting


Configure the game port in the Integrated Peripherals submenu ("Onboard Super I/O Device" field) of the BIOS. Refer to chapter 3 for more information.

2.7.2 Internal Audio Connectors


The AUX-in (J6) and CD-in (J7) connectors are used to receive audio from a CD-ROM drive, TV tuner or MPEG card.

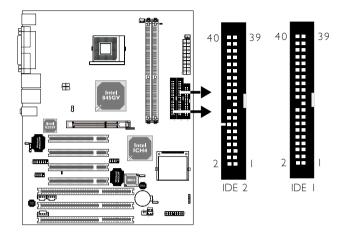
2.7.3 S/PDIF-out Connector

The system board is equipped with the S/PDIF (Sony/Philips Digital Interface) digital audio interface. S/PDIF is a standard audio file transfer format that transfers digital audio signals to a device without having to be converted first to an analog format. This prevents the quality of the audio signal from degrading whenever it is converted to analog.

One card-edge bracket, mounted with the S/PDIF port, will be provided as an option. Install the card-edge bracket to the system chassis then connect the audio cable connector to J5. Make sure pin I of the cable connector is aligned with pin I of J5. Now connect external speakers or a device that supports digital output to the S/PDIF port that is on the bracket.

2.7.4 Floppy Disk Drive Connector

The system board is equipped with a shrouded floppy disk drive connector that supports two standard floppy disk drives. To prevent improper floppy cable installation, the shrouded floppy disk header has a keying mechanism. The 34-pin connector on the floppy cable can be placed into the header only if pin I of the connector is aligned with pin I of the header:


Connecting the Floppy Disk Drive Cable

- Install the 34-pin header connector of the floppy disk drive cable into the shrouded floppy disk header (J19) on the system board. The colored edge of the ribbon should be aligned with pin 1 of J19.
- 2 Install the other 34-pin header connector(s) into the disk drive(s). Align the colored edge of the daisy chained ribbon cable with pin I of the drive edge connector(s). The end-most connector should be attached to the drive you want to designate as Drive A.

BIOS Setting

Enable or disable this function in the Integrated Peripherals submenu ("Onboard Super I/O Device" field) of the BIOS. Refer to chapter 3 for more information.

2.7.5 IDE Disk Drive Connector

The system board is equipped with two shrouded PCI IDE headers that will interface four Enhanced IDE (Integrated Drive Electronics) disk drives. To prevent improper IDE cable installation, each shrouded PCI IDE header has a keying mechanism. The 40-pin connector on the IDE cable can be placed into the header only if pin I of the connector is aligned with pin I of the header:

Connecting the IDE Disk Drive Cable

- If you are connecting two IDE drives, install the 40-pin connector of the IDE cable into the primary shrouded IDE header (IDE I -J16). If you are adding a third or fourth IDE device, install the 40-pin connector of the other IDE cable into the secondary shrouded IDE header (IDE 2 - J15).
- 2 Install the other 40-pin header connector(s) into the device with the colored edge of the ribbon cable aligned with pin 1 of the drive edge connector(s).

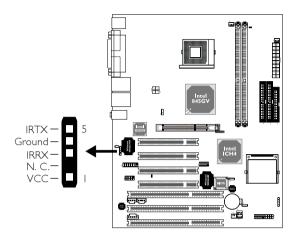
Note:

Refer to your disk drive user's manual for information about selecting proper drive switch settings.

Adding a Second IDE Disk Drive

When using two IDE drives, one must be set as the master and the other as the slave. Follow the instructions provided by the drive manufacturer for setting the jumpers and/or switches on the drives.

The system board supports Enhanced IDE or ATA-2, ATA/33, ATA/66 or ATA/100 hard drives. We recommend that you use hard drives from the same manufacturer. In a few cases, drives from two different manufacturers will not function properly when used together. The problem lies in the hard drives, not the system board.


Important:

If you encountered problems while using an ATAPI CD-ROM drive that is set in Master mode, please set the CD-ROM drive to Slave mode. Some ATAPI CD-ROMs may not be recognized and cannot be used if incorrectly set in Master mode.

BIOS Setting

Enable or disable the onboard primary or secondary IDE controller in the Integrated Peripherals submenu ("OnChip IDE Device" field) of the BIOS. Refer to chapter 3 for more information.

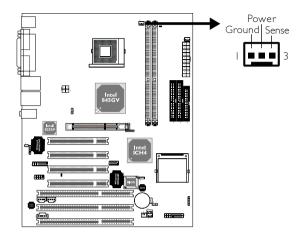
2.7.6 IrDA Connector

The system board is equipped with an IrDA connector for wireless connectivity between your computer and peripheral devices. The IRDA (Infrared Data Association) specification supports data transfers of 115K baud at a distance of 1 meter.

Connect your IrDA cable to connector J3 on the system board.

Note:

The sequence of the pin functions on some IrDA cable may be reversed from the pin function defined on the system board. Make sure to connect the cable to the IrDA connector according to their pin functions.

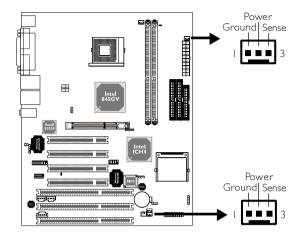

BIOS Setting

Select the type of IrDA standard supported by your device in the Integrated Peripherals submenu ("Onboard Super I/O Device" field) of the BIOS. Refer to chapter 3 for more information.

Driver Installation

You may need to install the proper drivers in your operating system to use the IrDA function. Refer to your operating system's manual or documentation for more information.

2.7.7 CPU Fan Connector

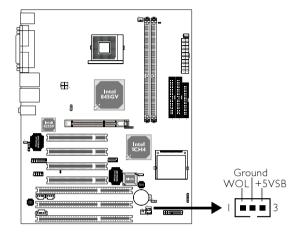


Hardware Installation

The CPU must be kept cool by using a fan with heatsink. Connect the CPU fan to the 3-pin fan connector at location JII of the system board. The system is capable of monitoring the speed of the CPU fan.

BIOS Setting

The "PC Health Status" submenu of the BIOS will display the current speed of the CPU fan. Refer to chapter 3 for more information.


2.7.8 System Fan and Second Fan Connectors

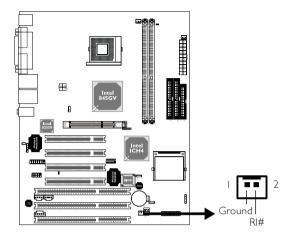
The system fan connector (J18) and second fan connector (J14) are used to connect cooling fans. The cooling fans will provide adequate airflow throughout the chassis to prevent overheating the CPU and system board components.

BIOS Setting

The "PC Health Status" submenu of the BIOS will display the current speed of the cooling fans. Refer to chapter 3 for more information.

2.7.9 Wake-On-LAN Connector

The system board supports the Wake-On-LAN function. This function will allow the network to remotely power-on a Soft Power Down (Soft-Off) PC. However, if your system is in the Suspend mode, you can power-on the system only through an IRQ or DMA interrupt.


Your LAN card package should include a cable. Connect one end of the cable to the wakeup header on the card and the other end to location JI3 on the system board. The network will detect Magic Packet and assert a wakeup signal to power-up the system. Refer to the add-in card's manual for details. Note: Your LAN card must support the remote wake up function.

Important: The 5VSB power source of your power supply must support ≥720mA.

BIOS Setting

To use the Wake-On-LAN function, you must enable the "Wake Up On LAN" ("Wake-Up Event Setup" field) in the Power Management Setup of the BIOS.

2.7.10 Wake-On-Ring Connector

...................

The Wake-On-Ring connector is used to connect to an internal modem add-in card that has the same connector. It will allow the system that is in the Suspend mode or Soft Power Off mode to wake-up/power-on to respond to calls coming through the internal modem card.

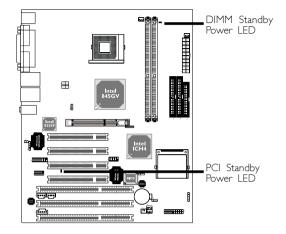
To use this function, connect one end of the cable (that came with the card) to the card's wake-on-ring connector and the other end to location J12 on the system board.

If you are using an external modem, the ring-on function will come through the serial port where the external modem is connected.

Important: If you are using a modem add-in card, the 5VSB power source of your power supply must support ≥720mA.

BIOS Setting

To use the Wake-On-LAN function, you must enable the "Power On By Ring" ("Wake-Up Event Setup" field) in the Power Management Setup of the BIOS.


Chassis signal Ground

2.7.11 Chassis Open Alarm Connector

The system board supports the chassis intrusion detection function. To use this function, connect the chassis intrusion sensor cable from the chassis to JI. Whenever a chassis component has been removed, the sensor sends signal to JI alerting you of a chassis intrusion event. To disable this function, place a jumper cap over JI.

Winbond Hardware Doctor Utility Setting

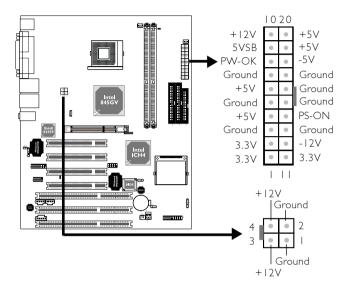
Install "Winbond Hardware Doctor Utility" contained in the provided CD. By default, this function is disabled. When enabled, a warning message will appear when the chassis is open. The utility can also be configured so that a beeping alarm will sound when the chassis is open. Refer to the "Winbond Hardware Doctor Utility" section in chapter 4 for more information.

2.7.12 DIMM and PCI Standby Power LEDs

DIMM Standby Power LED

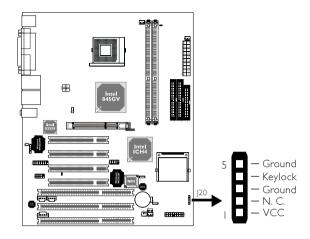
This LED (LED 2) will turn red when the system's power is on or when it is in the Suspend state (Power On Suspend or Suspend to RAM). It will not light when the system is in the Soft-Off state.

PCI Standby Power LED


This LED (LED I) will turn red when the system is in the power-on, Soft-Off or Suspend (Power On Suspend or Suspend to RAM) state.

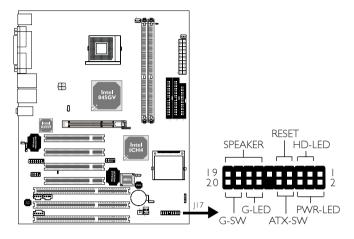
Important:

If the DIMM Standby Power LED or PCI Standby Power LED is lighted, you must power-off the system then turn off the power supply's switch or unplug the power cord prior to installing any memory modules or add-in cards.


2.7.13 Power Connectors

We recommend that you use a power supply that complies with the ATX12V Power Supply Design Guide Version 1.1. An ATX12V power supply has a standard 20-pin ATX main power connector and a 4-pin +12V power connector that must be inserted onto CN10 and CN8 connectors respectively.

The 4-pin +12V power connector enables the delivery of more +12VDC current to the processor's Voltage Regulator Module (VRM).


The system board requires a minimum of 250 Watt power supply to operate. Your system configuration (amount of memory, add-in cards, peripherals, etc.) may exceed the minimum power requirement. To ensure that adequate power is provided, use a 300 Watt (or greater) power supply.

2.7.14 Keylock / Power LED Connector

To lock the keyboard, connect the keyboard lock's cable connector from the front panel of the system chassis to pins 4 and 5. Connect the power LED's cable connector from the front panel of the system chassis to pins 1 to 3. The power LED will light only when the system's power is on.

2.7.15 Front Panel Connectors

HD-LED: Primary/Secondary IDE LED

This LED will light when the hard drive is being accessed.

RESET: Reset Switch

This switch allows you to reboot without having to power off the system thus prolonging the life of the power supply or system.

SPEAKER: Speaker Connector

This connects to the speaker installed in the system chassis.

G-SW: Green Switch

This switch will allow your system to enter the Suspend mode.

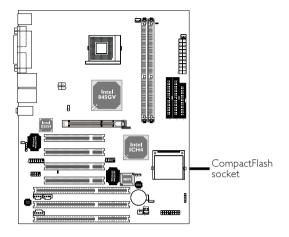
G-LED: Green LED

This LED will not light when the system's power is on or when the system is in the S3 (STR - Suspend To RAM) state. It will blink every second when the system is in the S1 (POS - Power On Suspend) state.

ATX-SW: ATX Power Switch

Depending on the setting in the BIOS setup, this switch is a "dual function power button" that will allow your system to enter the Soft-Off or Suspend mode. Refer to "Soft-Off By PWR-BTTN" in the Power Management Setup (Chapter 3).

PWR-LED: Power/Standby LED


When the system's power is on, this LED will light. When the system is in the SI (POS - Power On Suspend) state, it will blink every second. When the system is in the S3 (STR - Suspend To RAM) state, it will blink every second.

Note:

If a system did not boot-up and the Power/Standby LED did not light after it was powered-on, it may indicate that the CPU or memory module was not installed properly. Please make sure they are properly inserted into their corresponding socket.

	Pin	Pin Assignment
HD-LED	3	HDD LED Power
(Primary/Secondary IDE LED)	5	HDD
G-LED	4	Green LED Power
(Green LED)	6	Ground
ATX-SW	8	PWRBT+
(ATX power switch)	10	PWRBT-
G-SW	18	Ground
(Green switch)	20	SMI
RESET	7	Ground
(Reset switch)	9	H/W Reset
SPEAKER (Speaker connector)	3 5 7 9	Speaker Data N. C. Ground Speaker Power
PWR-LED (Power/Standby LED)	2 4 6	LED Power (+) LED Power (+) LED Power (-) or Standby Signal

2.7.16 CompactFlash Socket

The system board is equipped with the CompactFlashTM socket for inserting a CompactFlashTM card. CompactFlashTM card is a small removable mass storage device designed with flash technology - a non-volatile storage solution that does not require a battery to retain data indefinitely. The CompactFlashTM technology is widely used in products such as portable and desktop computers, digital cameras, handheld data collection scanners, PDAs, Pocket PCs, handy terminals and personal communicators.

CompactFlashTM and IDE 2 share the same channel. Since CompactFlashTM on this board is always in Master mode, if a CompactFlashTM card is installed in the socket, make sure the drive connected to the IDE 2 connector is set to Slave mode.

3.1 The Basic Input/Output System

The Basic Input/Output System (BIOS) is a program that takes care of the basic level of communication between the processor and peripherals. In addition, the BIOS also contains codes for various advanced features found in this system board. This chapter explains the Setup Utility for the Award BIOS.

After you power up the system, the BIOS message appears on the screen and the memory count begins. After the memory test, the following message will appear on the screen:

Press DEL to enter setup

If the message disappears before you respond, restart the system or press the "Reset" button. You may also restart the system by pressing the <Ctrl> <Alt> and keys simultaneously.

When you press , the main menu screen will appear.

Phoenix - Award	SIDS CHOS Setup Utility
Standard CNOS Features	► Frequency/Voltage Control
 Advanced BIOS Features 	Load Fail-Safe Defaults
 Advanced Chipset Features 	Load Optimized Defaults
 Integrated Peripherals 	Set Supervisor Password
► Power Hanagement Setup	Set User Password
► PnP/PCI Configurations	Save & Exit Setup
+ PC Health Status	Exit Without Saving
Esc : Quit F10 : Save & Enit Setup	†∔++ :SelectItem
Time, Date,	Hard Disk Type

3.1.1 Standard CMOS Features

Use the arrow keys to highlight "Standard CMOS Features" and press <Enter>. A screen similar to the one on the next page will appear.

Date (mm:dd:yy) Time (hh:mm:ss)	Tu	Item Help
IDE Primary Muster IDE Primary Muster IDE Primary Master IDE Secondary Master IDE Secondary Slave	None None	Henu Level + Change the day, month, year and century
Drive A Drive B	1.44M, 3.5 im. None	
Video Halt On	EGR/VER ALL , But Keyboard	
Base Newory Extended Memory Total Newory	6408 654728 18248	

The settings on the screen are for reference only. Your version may not be identical to this one.

3.1.1.1 Date

The date format is <day>, <month>, <date>, <year>. Day displays a day, from Sunday to Saturday. Month displays the month, from January to December. Date displays the date, from 1 to 31. Year displays the year, from 1990 to 2098.

3.1.1.2 Time

The time format is <hour>, <minute>, <second>.The time is based on the 24-hour military-time clock. For example, 1 p.m. is 13:00:00. Hour displays hours from 00 to 23. Minute displays minutes from 00 to 59. Second displays seconds from 00 to 59.

3.1.1.3 IDE Primary Master, IDE Primary Slave, IDE Secondary Master and IDE Secondary Slave

Move the cursor to the "IDE Primary Master", "IDE Primary Slave", "IDE Secondary Master" or "IDE Secondary Slave" field, then press <Enter>.

	- AwardB105 CMOS Setup U DE Priwary Slave	Hility
IDE HDD Auto-Detection	Press Enter	Item Help
IDE Primary Slave Access Mode	Auto Auto	Henu Level **
Capacity	e HS	To auto-detect the HDD's size, head on
Dylinder Head Precemp Landing Zene Sector		this channel
	-/PU/PD:Value F10:Save 6: Fail-Safe Defaults	ESC:Exit F1:General Help F7: Optimized Defaults

The settings on the screen are for reference only. Your version may not be identical to this one.

IDE HDD Auto Detection

Detects the parameters of the drive. The parameters will automatically be shown on the screen.

IDE Primary Master/Slave and IDE Secondary Master/Slave

The drive type information should be included in the documentation from your hard disk vendor. If you select "Auto", the BIOS will autodetect the HDD & CD-ROM drive at the POST stage and show the IDE for the HDD & CD-ROM drive. If a hard disk has not been installed, select "None".

Access Mode

For hard drives larger than 528MB, you would typically select the LBA type. Certain operating systems require that you select CHS or Large. Please check your operating system's manual or Help desk on which one to select.

Capacity

Displays the approximate capacity of the disk drive. Usually the size is slightly greater than the size of a formatted disk given by a disk checking program.

Cylinder

This field displays the number of cylinders.

Head

This field displays the number of read/write heads.

Precomp

This field displays the number of cylinders at which to change the write timing.

Landing Zone

This field displays the number of cylinders specified as the landing zone for the read/write heads.

Sector

This field displays the number sectors per track.

3.1.1.4 Drive A and Drive B

These fields identify the types of floppy disk drives installed.

None	No floppy drive is installed
360K, 5.25 in.	5-1/4 in. standard drive; 360KB capacity
1.2M, 5.25 in.	5-1/4 in. AT-type high-density drive; 1.2MB capacity
720K, 3.5 in.	3-1/2 in. double-sided drive; 720KB capacity
1.44M, 3.5 in.	3-1/2 in. double-sided drive; 1.44MB capacity
2.88M, 3.5 in.	3-1/2 in. double-sided drive; 2.88MB capacity

3.1.1.5 Video

This field selects the type of video adapter used for the primary system monitor. Although secondary monitors are supported, you do not have to select the type. The default setting is EGA/VGA.

EGA/VGA	Enhanced Graphics Adapter/Video Graphics Array. For
	EGA,VGA, SVGA and PGA monitor adapters.
CGA 40	Color Graphics Adapter. Power up in 40-column
	mode.
CGA 80	Color Graphics Adapter. Power up in 80-column

mode.

Mono Monochrome adapter. Includes high resolution monochrome adapters.

3.1.1.6 Halt On

This field determines whether the system will stop if an error is detected during power up. The default setting is All Errors.

No Errors The system boot will not stop for any errors detected.
All Errors The system boot will stop whenever the BIOS detects a non-fatal error.
All, But Keyboard The system boot will not stop for a keyboard error; it will stop for all other errors.
All, But Diskette The system boot will not stop for a disk error; it will stop for all other errors.
All, But Disk/Key The system boot will not stop for a disk or keyboard error; it will stop for all other errors.

3.1.1.7 Base Memory

Displays the amount of base (or conventional) memory installed in the system. The value of the base memory is typically 512K for systems with 512K memory installed on the motherboard or 640K for systems with 640K or more memory installed on the motherboard.

3.1.1.8 Extended Memory

Displays the amount of extended memory detected during boot-up.

3.1.1.9 Total Memory

Displays the total memory available in the system.

3.1.2 Advanced BIOS Features

The Advanced BIOS Features allows you to configure your system for basic operation. Some entries are defaults required by the system board, while others, if enabled, will improve the performance of your system or let you set some features according to your preference.

	AwardBIOS CNOS Setup vanced BIDS Features	Uti	lity
Virus Harning	Disabled	4	Item Help
CPU L1 3 L2 Cache CPU Hyper-Threading Quick Pewer On Self Test First Boot Device Boot Other Device Boot Other Device On-Chip Lan Boot ROM Onloard Lan Boot ROM Swap Floppy Drive Boot Up Floppy Seek Boot Up Floppy Seek Socurity Option Option Plocentic Rate (Chars/Sec) Socurity Option OPIC Mode MPS Version Control For OS OS Select For DEMM > 64MB HDD S.M. 9.8. T. Casebility	Enabled Enabled Enabled Floopv Disobled Disobled Disobled Disobled Disobled Enabled Enabled Enabled Setup Enabled Setup Enabled Enabled		Menu Level * Allews you to choose the VIRUS warning feature for IDL Hard Disk boot sector protection. If this function is enabled and someone attempt to write data into this area. BIUS will shee a warning message on screen and alarm beep
Report No FOD For WEN 95 Swall Loga(EPR) Show	No Enabled	÷	
	PU/PD:Value F10:Save Fail-Safe Defaults		SC:Exit F1:General Help 7: Optimized Defaults

The screen above list all the fields available in the Advanced BIOS Features submenu, for ease of reference in this manual. In the actual CMOS setup, you have to use the scroll bar to view the fields. The settings on the screen are for reference only. Your version may not be identical to this one.

3.1.2.1 Virus Warning

This field protects the boot sector and partition table of your hard disk drive. When this field is enabled, the Award BIOS will monitor the boot sector and partition table of the hard disk drive. If an attempt is made to write to the boot sector or partition table of the hard disk drive, the BIOS will halt the system and an error message will appear.

After seeing the error message, if necessary, you will be able to run an anti-virus program to locate and remove the problem before any damage is done.

Many disk diagnostic programs which attempt to access the boot sector table will cause the warning message to appear. If you are running such a program, we recommend that you first disable this field.

Also, disable this field if you are installing or running certain operating systems like Windows[®] 98SE/2000/ME/XP or the operating system may not install nor work.

3.1.2.2 CPU LI Cache and CPU L2 Cache

These fields speed up the memory access. The default value is enabled. Enable the external cache for better performance.

3.1.2.3 CPU Hyper-Threading (for Intel[®] Pentium[®] 4 Processor with Hyper-Threading Technology)

This field is used to enable the functionality of the Intel[®] Pentium[®] 4 Processor with Hyper-Threading Technology and will appear only when using this processor.

3.1.2.4 Quick Power On Self Test

This field speeds up Power On Self Test (POST) whenever the system is powered on. The BIOS will shorten or skip some check items during POST. To attain the shortest POST time, select "Fast".

3.1.2.5 First Boot Device, Second Boot Device, Third Boot Device and Boot Other Device

Select the drive to boot first, second and third in the "First Boot Device" "Second Boot Device" and "Third Boot Device" fields respectively. The BIOS will boot the operating system according to the sequence of the drive selected. Set "Boot Other Device" to Enabled if you wish to boot from another device.

3.1.2.6 On-Chip LAN Boot ROM

Set this field to Enabled to use the boot ROM (instead of a disk drive) to boot-up the system and access the local area network directly. If you wish to change the boot ROM's settings, type the <Ctrl> and <S> keys simultaneously when prompted during boot-up. Take note: you will be able to access the boot ROM's program (by typing <Ctrl> and <S>) only when this field is enabled.

3.1.2.7 Onboard LAN Boot ROM (G4V620-N only)

Set this field to Enabled to use the boot ROM (instead of a disk drive) to boot-up the system and access the local area network directly. If you wish to change the boot ROM's settings, type the <Ctrl> and <S> keys simultaneously when prompted during boot-up. Take note: you will be able to access the boot ROM's program (by typing <Ctrl> and <S>) only when this field is enabled.

3.1.2.8 Swap Floppy Drive

When this field is enabled and the system is booting from the floppy drive, the system will boot from drive B instead of drive A. When this field is disabled and the system is booting from the floppy drive, the system will boot from drive A. You must have two floppy drives to use this function.

3.1.2.9 Boot Up Floppy Seek

When enabled, the BIOS will check whether the floppy disk drive installed is 40 or 80 tracks. Note that the BIOS cannot distinguish between 720K, 1.2M, 1.44M and 2.88M drive types as they are all 80 tracks. When disabled, the BIOS will not search for the type of floppy disk drive by track number. Note that there will not be any warning message if the drive installed is 360KB.

3.1.2.10 Boot Up NumLock Status

This allows you to determine the default state of the numeric keypad. By default, the system boots up with NumLock on wherein the function of the numeric keypad is the number keys. When set to Off, the function of the numeric keypad is the arrow keys.

3.1.2.11 Gate A20 Option

This entry allows you to select how gate A20 is handled. Gate A20 is a device used to address memory above I Mbyte. Initially, gate A20 was handled via the keyboard controller. Today, while keyboards still provide this support, it is more common, and much faster, for the system chipset to provide support for gate A20.

3.1.2.12 Typematic Rate Setting

Disabled Continually holding down a key on your keyboard will cause the BIOS to report that the key is down.

Enabled The BIOS will not only report that the key is down, but will first wait for a moment, and, if the key is still down, it will begin to report that the key has been depressed repeatedly. For example, you would use such a feature to accelerate cursor movements with the arrow keys. You can then select the typematic rate and typematic delay in the "Typematic Rate (Chars/Sec)" and "Typematic Delay (Msec)" fields below.

3.1.2.13 Typematic Rate (Chars/Sec)

This field allows you to select the rate at which the keys are accelerated.

3.1.2.14 Typematic Delay (Msec)

This field allows you to select the delay between when the key was first depressed and when the acceleration begins.

3.1.2.15 Security Option

This field determines when the system will prompt for the password - everytime the system boots or only when you enter the BIOS setup. Set the password in the Set Supervisor/User Password submenu.

- System The system will not boot and access to Setup will be denied unless the correct password is entered at the prompt.
- Setup The system will boot, but access to Setup will be denied unless the correct password is entered at the prompt.

3.1.2.16 APIC Mode

Leave this field in its default setting.

3.1.2.17 MPS Version Control for OS

This field is used to select the MPS version that the system board is using.

3.1.2.18 OS Select for DRAM > 64MB

This field allows you to access the memory that is over 64MB in OS/2.

3.1.2.19 HDD S.M.A.R.T. Capability

The system board supports SMART (Self-Monitoring, Analysis and Reporting Technology) hard drives. SMART is a reliability prediction technology for ATA/IDE and SCSI drives. The drive will provide sufficient notice to the system or user to backup data prior to the drive's failure. The default is Disabled. If you are using hard drives that support S.M.A.R.T., set this field to Enabled. SMART is supported in ATA/33 or later hard drives.

3.1.2.20 Report No FDD For WIN 95

The options are Yes and No.

3.1.2.21 Small Logo(EPA) Show

Enabled The EPA logo will appear during system boot-up. *Disabled* The EPA logo will not appear during system boot-up.

3.1.3 Advanced Chipset Features

	RwardB105 CMOS Setup U nced Chipset Features	tility
DROM Timing Selectable CRS Latency Time	By SPD 1.5	Itan Help
Active to Precharge Delay DRFM BRSM to CRSM Delay DRFM BRSM Precharge Turbe Mode Memory Frequency For System BIOS Cacheable Video BIOS Cacheable Nemary Hole At 15M-16M Delayed Transaction Delay Prior to Thermal AGP Aperture Size 100	7 3 9 Futbo Enabled Disabled Disabled Enabled 16 Hin 64	Menu Level +
On-Chip VGA Setting On-Chip VGA Dn-Chip Frame Buffer Size Boot Display	Enabled BHB Ruto	
11**:Nove Enter:Select */-/ F5: Previous Values F6:	PU/PD:Value F10:Save Fail-Safe Defaults	ESC:Exit F1:General Help F7: Optimized Defaults

The settings on the screen are for reference only. Your version may not be identical to this one.

This section gives you functions to configure the system based on the specific features of the chipset. The chipset manages bus speeds and access to system memory resources. <u>These items should not</u> <u>be altered unless necessary</u>. The default settings have been chosen because they provide the best operating conditions for your system. The only time you might consider making any changes would be if you discovered some incompatibility or that data was being lost while using your system.

3.1.3.1 DRAM Timing Selectable

This field is used to select the timing of the DRAM.

By SPD The EEPROM on a DIMM has SPD (Serial Presence Detect) data structure that stores information about the module such as the memory type, memory size, memory speed, etc. When this option is selected, the system will run according to the information in the EEPROM. This option is the default setting because it provides the most stable condition for the system. The "CAS Latency Time" to "DRAM RAS# Precharge" fields will show the default settings by SPD.

Manual If you want better performance for your system other than the one "by SPD", select "Manual". Then select the best option in the "CAS Latency Time" to "DRAM RAS# Precharge" fields.

3.1.3.2 CAS Latency Time

This field is used to select the local memory clock periods.

3.1.3.3 Active to Precharge Delay

The options are 5, 6 and 7.

3.1.3.4 DRAM RAS# to CAS# Delay

The options are 2 and 3.

3.1.3.5 DRAM RAS# Precharge

This field controls RAS# precharge (in local memory clocks).

3.1.3.6 Turbo Mode

If you want the system to run at a faster speed, set this field to Enabled. However, compatibility problems may occur with some DRAMs if the system is running in Turbo mode. If you encounter this problem, set this field to Disabled.

3.1.3.7 Memory Frequency For

This field is used to select the memory clock speed of the DIMM.

3.1.3.8 System BIOS Cacheable

When this field is enabled, accesses to the system BIOS ROM addressed at F0000H-FFFFFH are cached, provided that the cache controller is enabled. The larger the range of the Cache RAM, the higher the efficiency of the system.

3.1.3.9 Video BIOS Cacheable

As with caching the system BIOS, enabling the Video BIOS cache will allow access to video BIOS addresssed at C0000H to C7FFFH to be cached, if the cache controller is also enabled. The larger the range of the Cache RAM, the faster the video performance.

3.1.3.10 Memory Hole At 15M-16M

In order to improve system performance, certain space in memory can be reserved for ISA cards. This memory must be mapped into the memory space below 16MB. When enabled, the CPU assumes the 15-16MB memory range is allocated to the hidden ISA address range instead of the actual system DRAM. When disabled, the CPU assumes the 15-16MB address range actually contains DRAM memory. If more than 16MB of system memory is installed, this field must be disabled to provide contiguous system memory.

3.1.3.11 Delayed Transaction

When enabled, this function frees up the PCI bus for other PCI masters during the PCI-to-ISA transactions. This allows PCI and ISA buses to be used more efficiently and prevents degradation of performance on the PCI bus when ISA accesses are made.

3.1.3.12 Delay Prior To Thermal

This field is used to select the time that would force the CPU to a 50% duty cycle when it exceeds its maximum operating temperature therefore protecting the CPU and the system board from overheating to ensure a safe computing environment.

3.1.3.13 AGP Aperture Size (MB)

This field is relevant to the memory-mapped graphics data of the AGP card installed in your system. Leave this in its default setting.

3.1.3.14 On-Chip VGA Setting

On-Chip VGA

This field allows you to enable or disable the onboard VGA.

On-Chip Frame Buffer Size

The options are IMB and 8MB.

Boot Display

This field is used to select the type of display that is connected to the onboard VGA.

3.1.4 Integrated Peripherals

Phoenix	- AwardB105 CMOS Setup U Integrated Peripherals	tility
• OnChip IDE Device	Press Enter	Item Help
 Onboard Super I/O Device USB Controller USB 2.0 Controller USB Keyboard Support HCS7 Rodie Init Display First De-Chip LBM control DeBoard LBM control 	Press Enter Enabled Finabled Buto Deloard/RGP Enabled Enabled	Menu Level *
	-/PU/PD:Value_F10:Save 6: Fail-Safe Defaults	ESC:Exit F1:General Help F7: Optimized Defaults

The settings on the screen are for reference only. Your version may not be identical to this one.

3.1.4.1 OnChip IDE Device

Move the cursor to this field and press <Enter>. The following screen will appear.

Phoenix - AwardSTOS CHOS Se OnChip TOE Device	stop Utility
On-Chip Primery PCI IDE Enabled	Item Help
IDE Primary Naster PIO Puto IDE Primary Slave PIO Ruto IDE Primary Slave UDMA Ruto IDE Primary Slave UDMA Ruto IDE Secondary Muster PIO Ruto IDE Secondary Nuster PIO Ruto IDE Secondary Slave UDMA Ruto IDE Secondary Slave UDMA Ruto IDE Secondary Slave UDMA Ruto IDE HOO Block Mode Enebled	Menu Level **
14++:Nove Enter:Select +/-/PU/PD:Value F10: F5: Previous Values - F6: Fail-Safe Dafaal	

The settings on the screen are for reference only. Your version may not be identical to this one.

On-Chip Primary PCI IDE and On-Chip Secondary PCI IDE

These fields allow you to enable or disable the primary and secondary IDE controller. Select Disabled if you want to add a different hard drive controller.

IDE Primary Master/Slave PIO and IDE Secondary Master/Slave PIO

PIO means Programmed Input/Output. Rather than have the BIOS issue a series of commands to effect a transfer to or from the disk drive, PIO allows the BIOS to tell the controller what it wants and then let the controller and the CPU perform the complete task by themselves. Your system supports five modes, 0 (default) to 4, which primarily differ in timing. When Auto is selected, the BIOS will select the best available mode after checking your drive.

- Auto The BIOS will automatically set the system according to your hard disk drive's timing.
- Mode 0-4 You can select a mode that matches your hard disk drive's timing. Caution: Do not use the wrong setting or you will have drive errors.

IDE Primary Master/Slave UDMA and IDE Secondary Master/ Slave UDMA

These fields allow you to set the Ultra DMA in use. When Auto is selected, the BIOS will select the best available option after checking your hard drive or CD-ROM.

Auto The BIOS will automatically detect the settings for you.

Disabled The BIOS will not detect these categories.

IDE HDD Block Mode

- Enabled The IDE HDD uses the block mode. The system BIOS will check the hard disk drive for the maximum block size the system can transfer. The block size will depend on the type of hard disk drive.
- Disabled The IDE HDD uses the standard mode.

3.1.4.2 Onboard Super IO Device

Move the cursor to this field and press <Enter>. The following screen will appear:

POWER ON Function NB Power ON Password	BUTTON ONLY	Item Help
Bot Key Paeer (M Onboard FDC Controller Onboard Serial Port 1 Doboard Serial Port 1 Doboard Serial Port 2 UNIT Mode Select RoD. ToD Retive IN Transmission Delay UR2 Duplex Mode UN2 Duplex Mode UN2 Duplex Mode UN2 Duplex Mode UN2 Duplex Mode UN2 Duplex Mode EPP Node Select ECP Node Use DDA EVENDA for PNR-Fail Same Port Bidness Midi Port Bidness Midi Port Bidness	Ctr1-F1 Enabled 3F8/1804 2F8/1803 Normal Hi.Lo Enabled Half IR-Bc21x2 378/1807 978/1807 978/1807 978/1807 978 978 979 EP91.7 3 0ff 201 330 300 10	Henu Leve] **

The settings on the screen are for reference only. Your version may not be identical to this one.

Power On Function

This field allows you to use the keyboard or PS/2 mouse to power-on the system.

Button only	Default setting. Uses the power button to power on the system.
Password	When this option is selected, set the password you would like to use to power-on the system in the
	"KB Power On Password" field.
Hot Key	When this option is selected, select the function key you would like to use to power-on the system in the "Hot Key Power On" field.
Mouse Left	When this option is selected, double-click the left button of the mouse to power-on the system.
Mouse Right	When this option is selected, double-click the right button of the mouse to power-on the system.
Any Key	Press any key to power-on the system.
Keyboard 98	When this option is selected, press the "wake up" key of the Windows® 98 compatible keyboard to power-on the system.

KB Power On Password

Move the cursor to this field and press <Enter>. Enter your password. You can enter up to 5 characters. Type in exactly the same password to confirm, then press <Enter>.

The power button will not function once a keyboard password has been set in this field. You must type the correct password to poweron the system. If you forgot the password, power-off the system and remove the battery. Wait for a few seconds and install it back before powering-on the system.

Hot Key Power On

This field is used to select a function key that you would like to use to power-on the system.

Onboard FDC Controller

Enabled Enables the onboard floppy disk controller. *Disabled* Disables the onboard floppy disk controller.

Onboard Serial Port I and Onboard Serial Port 2

- Auto The system will automatically select an I/O address for the onboard serial port I and serial port 2.
- 3F8/IRQ4, 2F8/IRQ3, 3E8/IRQ4, 2E8/IRQ3 Allows you to manually select an I/O address for the onboard serial port I and serial port 2.
- Disabled Disables the onboard serial port I and/or serial port 2.

UART Mode Select

The system board supports IrDA function for wireless connectivity between your computer and peripheral devices. You may not use IrDA and the COM 2 serial port at the same time. If you are using the COM 2 serial port, make sure this field is set to Normal.

To use the IrDA function, follow the steps below.

I. Connect your IrDA cable to connector J3 on the system board.

- 2. Set the "UART Mode Select" field to the type of IrDA standard supported by your IrDA peripheral/device. For better transmission of data, your IrDA peripheral device must be within a 30° angle and within a distance of I meter.
- 3. Set the "RxD, TxD Active", "IR Transmission Delay", "UR2 Duplex Mode" and "Use IR Pins" fields appropriately.

RxD, TxD Active

The options are Hi, Lo; Lo, Hi; Lo, Lo; and Hi, Hi.

IR Transmission Delay

If this field is Enabled, transmission of data will be slower. This is recommended when you encounter transmission problem with your device. The options are: Enabled and Disabled.

UR2 Duplex Mode

Half Data is completely transmitted before receiving data.

Full Transmits and receives data simultaneously.

Use IR Pins

The options are IR-Rx2Tx2 and RxD2TxD2.

Onboard Parallel Port

378/IRQ7, 3BC/IRQ7, 278/IRQ5 Selects the I/O address and IRQ for the onboard parallel port.

Disabled Disables the onboard parallel port.

Parallel Port Mode

The options are SPP, EPP, ECP and ECP+EPP. These apply to a standard specification and will depend on the type and speed of your device. Refer to your peripheral's manual for the best option.

SPP

Allows normal speed operation but in one direction only.

"ECP (Extended Capabilities Port)"

Allows parallel port to operate in bidirectional mode and at a

speed faster than the normal mode's data transfer rate.

"EPP (Enhanced Parallel Port)"

Allows bidirectional parallel port operation at maximum speed.

If you selected EPP, the "EPP Mode Select" field is selectable. If you selected ECP, the "ECP Mode Use DMA" field is selectable. If you selected ECP+EPP, both "EPP Mode Select" and "ECP Mode Use DMA" are selectable.

EPP Mode Select

This field is used to select the EPP mode of the parallel port.

ECP Mode Use DMA

This is used to select a DMA channel of the parallel port.

PWRON After PWR-Fail

Off	When power returns after an AC power failure, the
	system's power is off. You must press the Power
	button to power-on the system.

- *On* When power returns after an AC power failure, the system will automatically power-on.
- Former-Sts When power returns after an AC power failure, the system will return to the state where you left off before power failure occurs. If the system's power is off when AC power failure occurs, it will remain off when power returns. If the system's power is on when AC power failure occurs, the system will power-on when power returns.

Game Port Address

This field is used to select the game port's address.

Midi Port Address

This field is used to select the midi port's address. If you have selected the midi port's address, you may select its IRQ in the "Midi Port IRQ" field.

Midi Port IRQ

This field is used to select the midi port's IRQ.

3.1.4.3 USB Controller

- Enabled Enables the onboard USB. You can further configure the onboard USB by setting the "USB 2.0 Controller" and "USB Keyboard Support" fields.
- Disabled Disables the onboard USB.

3.1.4.4 USB 2.0 Controller

If you are using USB 2.0, this field must be set to Enabled.

3.1.4.5 USB Keyboard Support

By default, USB Keyboard Support is Disabled. However, if you are using a USB keyboard under DOS, make sure to enable this function.

3.1.4.6 AC97 Audio

Auto Select this option when using the onboard audio codec. Disabled Select this option when using a PCI sound card.

3.1.4.7 Init Display First

This field is used to select whether to initialize the onboard VGA, AGP or PCI first when the system boots.

Onboard/AGPWhen the system boots, it will first initialize the
onboard VGA or AGP.PCI SlotWhen the system boots, it will first initialize PCI.

3.1.4.8 On-Chip LAN Control

This field is used to enable or disable the Intel 82562 LAN controller that controls the LAN I port.

3.1.4.9 Onboard LAN Control (G4V620-N only)

This field is used to enable or disable the Intel 82559 LAN controller that controls the LAN 2 port.

3.1.5 Power Management Setup

The Power Management Setup allows you to configure your system to most effectively save energy.

ACPI Function	Enabled	Item Help	
RCPT Sumperd Type Com VEREIDS if SI Regume (Bit KB Wete-Up From SI Power Management Video Off Nethod Video Off Nethod Video Off In Suspend Suspend Type MUDEN Use IRQ Suspend Made HDD Power Down Soft-Off by PMR-BITN Make-Up Event Setup	SILPOS) Auto Disabled Upper Define UPPS Yes Stop Grant 3 Disabled Disabled Disabled Press Enter	Henu Level •	

The settings on the screen are for reference only. Your version may not be identical to this one.

3.1.5.1 ACPI Function

This function should be enabled only in operating systems that support ACPI. Currently, only Windows[®] 98SE/2000/ME/XP supports this function. If you want to use the Suspend to RAM function, make sure this field is enabled then select "S3(STR)" in the "ACPI Suspend Type" field.

3.1.5.2 ACPI Suspend Type

This field is used to select the type of Suspend mode.

- SI(POS) Enables the Power On Suspend function.
- S3(STR) Enables the Suspend to RAM function. You can further configure this function by setting the "Run VGABIOS if S3 Resume" and "USB KB Wake-Up From S3" fields.

3.1.5.3 Run VGABIOS if S3 Resume

When this field is set to Auto, the system will initialize the VGA BIOS when it wakes up from the S3 state.

3.1.5.4 USB KB Wake-Up From S3

Set this field to Enabled to use the Wake-On-USB Keyboard function. This function allows you to use a USB keyboard to wake up a system from the S3 (STR - Suspend To RAM) state.

3.1.5.5 Power Management

This field allows you to select the type (or degree) of power saving by changing the length of idle time that elapses before the Suspend mode and HDD Power Down fields are activated.

Min Saving	Minimum power saving time for the Suspend Mode		
	(I hour) and HDD Power Down (15 min.)		
Max Saving	Maximum power saving time for the. Suspend		
	Mode and HDD Power Down = 1 min.		
User Define	Allows you to set the power saving time in the		
	"Suspend Mode" and "HDD Power Down" fields.		

3.1.5.6 Video Off Method

This determines the manner in which the monitor is blanked.

V/H SYNC + I	Blank This selection will cause the system to turn
	off the vertical and horizontal synchronization
	ports and write blanks to the video buffer.
Blank Screen	This option only writes blanks to the video buffer.
DPMS	Initializes display power management signaling. Use
	this option if your video board supports it.

3.1.5.7 Video Off In Suspend

This field is used to activate the video off feature when the system enters the Suspend mode. The options are Yes and No.

3.1.5.8 Suspend Type

This field is used to select the type of Suspend Mode.

3.1.5.9 Modem Use IRQ

This field is used to set an IRQ channel for the modem installed in your system.

3.1.5.10 Suspend Mode

This is selectable only when the Power Management field is set to User Define. When the system enters the Suspend mode according to the power saving time selected, the CPU and onboard peripherals will be shut off.

3.1.5.11 HDD Power Down

This is selectable only when the Power Management field is set to User Define. When the system enters the HDD Power Down mode according to the power saving time selected, the hard disk drive will be powered down while all other devices remain active.

3.1.5.12 Soft-Off by PWR-BTTN

This field allows you to select the method of powering off your system.

- Hold 4 Sec. Regardless of whether the Power Management function is enabled or disabled, if the power button is pushed and released in less than 4 sec, the system enters the Suspend mode. The purpose of this function is to prevent the system from powering off in case you accidentally "hit" or pushed the power button. Push and release again in less than 4 sec to restore. Pushing the power button for more than 4 seconds will power off the system.
- *Instant-Off* Pressing and then releasing the power button at once will immediately power off your system.

3.1.5.13 Wake-Up Event Setup

Move the cursor to this field and press <Enter>. The following screen will appear:

Make-Up by PCI card	Disabled
Power On by Ring	Disabled
Maior Up Dis LEM Resume by Alarm Date(af Month) Alarm Tiwe(bh:mm:ss) Alarm	Disabled Disabled 0 : 0 : 0

The settings on the screen are for reference only. Your version may not be identical to this one.

Wake-Up By PCI Card

- Enabled Access to a PCI card such as a modem or onboard LAN will cause the system to wake up. The PCI card must support the wake up function.
- Disabled The system will not wake up despite access to the PCI card or onboard LAN.

Power On By Ring

Set this field to Enabled to use the modem ring-on function. This will allow your system to power-on to respond to calls coming from an external or internal modem. Refer to "Wake-On-Ring Connector" in chapter 2 for more information.

Wake Up On LAN

If you are using a LAN card that supports the remote wake up function, set this field to Enabled. The will allow the network to remotely wake up a Soft Power Down (Soft-Off) PC. However, if your system is in the Suspend mode, you can wake up the system only through an IRQ or DMA interrupt. Refer to "Wake-On-LAN Connector" in chapter 2 for more information.

Resume By Alarm

- Enabled When Enabled, you can set the date and time you would like the Soft Power Down (Soft-Off) PC to power-on in the "Date (of Month) Alarm" and "Time (hh:mm:ss) Alarm" fields. However, if the system is being accessed by incoming calls or the network (Resume On Ring/LAN) prior to the date and time set in these fields, the system will give priority to the incoming calls or network.
- Disabled Disables the automatic power-on function. (default)

Date (of Month) Alarm

- 0 The system will power-on everyday according to the time set in the "Time (hh:mm:ss) Alarm" field.
- I-31 Select a date you would like the system to power-on. The system will power-on on the set date, and time set in the "Time (hh:mm:ss) Alarm" field.

Time (hh:mm:ss) Alarm

This is used to set the time you would like the system to power-on. If you want the system to power-on everyday as set in the "Date (of Month) Alarm" field, the time set in this field must be later than the time of the RTC set in the Standard CMOS Features submenu.

3.1.6 PnP/PCI Configurations

This section describes configuring the PCI bus system. It covers some very technical items and it is strongly recommended that only experienced users should make any changes to the default settings.

The settings on the screen are for reference only. Your version may not be identical to this one.

3.1.6.1 PNP OS Installed

The options are Yes and No.

3.1.6.2 Reset Configuration Data

Enabled The BIOS will reset the Extended System Configuration Data (ESCD) once automatically. It will then recreate a new set of configuration data.

Disabled The BIOS will not reset the configuration data.

3.1.6.3 Resources Controlled By

The Award Plug and Play BIOS has the capability to automatically configure all of the boot and Plug and Play compatible devices.

Auto The system will automatically detect the settings for you. Manual Choose the specific IRQ and DMA in the "IRQ Resources" and "DMA Resources" fields respectively.

3.1.6.4 IRQ Resources and DMA Resources

Move the cursor to these fields and press <Enter>. These fields are used to set each system interrupt to either Legacy ISA or PCI.

PCI/ISA PnPFor devices compliant with the PCI bus architecture.Legacy ISAFor devices compliant with the original PC AT bus
specification.

3.1.6.5 PCI/VGA Palette Snoop

This field determines whether the MPEG ISA/VESA VGA cards can work with PCI/VGA or not. The default value is Disabled.

Enabled MPEG ISA/VESA VGA cards work with PCI/VGA. Disabled MPEG ISA/VESA VGA cards does not work with PCI/ VGA.

3.1.7 PC Health Status

Phoenix - AwardB105 CN05 Setup Utility PC Health Status			
CPU Warning Temperature	Disabled	Item Help	
Durrent System Temp. Durrent CPUL Temperature Durrent CPUL FRW Speed Durrent CAU FRW Speed Ourrent 2nd FRW Speed Voore +1.5V +3.3V +3.3V +22 V -122 V -122 V -5 V VBBT(V) SVSB(V)		Hens Level *	
	PU/PD:Value F10:Save Fail-Safe Defaults	ESC:Exit F1:General Help F7: Optimized Defaults	

The settings on the screen are for reference only. Your version may not be identical to this one.

3.1.7.1 CPU Warning Temperature

This field is used to select the CPU's temperature limit. Once the system has detected that the CPU's temperature exceeded the limit set in this field, a warning alarm will beep.

3.1.7.2 Current System Temperature, Current CPUI Temperature, Current System Fan Speed, Current CPU Fan Speed and Current 2nd Fan Speed

These fields show the internal temperature of the system, current temperature of the CPU, and the current fan speed of the system, CPU and 2nd fans in RPM (Revolutions Per Minute).

3.1.7.3 Vcore

These fields show the voltage of the processor.

3.1.7.4 +1.5V, +3.3V, +5V, -5V, +12V, -12V, VBAT(V) and 5VSB(V)

These fields show the output voltage of the power supply.

If you want a warning message to pop-up or a warning alarm to sound when an abnormal condition occurs, you must install the Winbond Hardware Doctor utility. This utility is included in the CD that came with the system board. Refer to the "Winbond Hardware Doctor Utility" section in chapter 4 for more information.

3.1.8 Frequency/Voltage Control

Phoenix - AwardB105 CM05 Setup Utility Frequency/Voltage Control			
CPU Clock Ratio	Item Help		
Ruto Datest PCI Clk Enabled Spread Spectrum Disabled OPU Most/3W66/PCI Clock Default	Henu Level ►		
11-*-:Nove Enter:Select -/-/PU/PD:Value F19:5 ES: Previous Values - E6: Eatl-Safe Default			

The settings on the screen are for reference only. Your version may not be identical to this one.

3.1.8.1 CPU Clock Ratio

This field is used to select the CPU's frequency ratio.

Important:

The frequency ratio of some processors may have been locked by the manufacturer. If you are using this kind of processor, setting an extended ratio for the processor will have no effect. The system will instead use its factory default ratio.

3.1.8.2 Auto Detect PCI Clk

When enabled, the system will automatically send clock signals to existing PCI devices.

3.1.8.3 Spread Spectrum

Leave this field in its default setting. Do not alter this setting unless advised by an engineer or technician.

3.1.8.4 CPU Host/3V66/PCI Clock

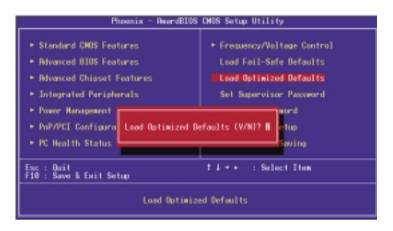
This field provides several options for selecting the external system bus clock of the processor. The AGP clock and PCI clock will at the same time appear next to the external bus clock selected. For example, if you selected "100/66/33MHz", "100" is the external bus clock, "66" is the AGP clock and "33" is the PCI clock. The default setting is "Default". Under this setting, the system will run according to the processor's clock frequency.

Important:

Overclocking may result to the processor's or system's instability and are not guaranteed to provide better system performance.

If you selected an option other than the default setting and is unable to boot up the system, clear the CMOS data by setting JP3 to 2-3 On. All fields in the BIOS Setup will automatically be set to their default settings.

3.1.9 Load Fail-Safe Defaults


The "Load Fail-Safe Defaults" option loads the troubleshooting default values permanently stored in the ROM chips. These settings are not optimal and turn off all high performance features. You should use these values only if you have hardware problems. Highlight this option in the main menu and press <Enter>.

If you want to proceed, type ${<}Y{>}$ and press ${<}Enter{>}.$ The default settings will be loaded.

3.1.10 Load Optimized Defaults

The "Load Optimized Defaults" option loads optimized settings from the BIOS ROM. Use the default values as standard values for your system. Highlight this option in the main menu and press <Enter>.

Type <Y> and press <Enter> to load the Setup default values.

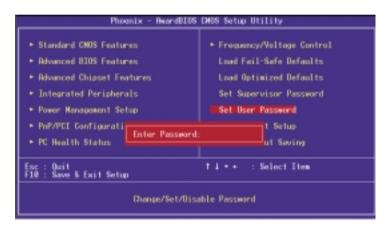
3.1.11 Set Supervisor Password

If you want to protect your system and setup from unauthorized entry, set a supervisor's password with the "System" option selected in the Advanced BIOS Features. If you want to protect access to setup only, but not your system, set a supervisor's password with the "Setup" option selected in the Advanced BIOS Features. You will not be prompted for a password when you cold boot the system.

Use the arrow keys to highlight "Set Supervisor Password" and press <Enter>.

Type in the password. You are limited to eight characters. When done, the message below will appear:

Confirm Password:

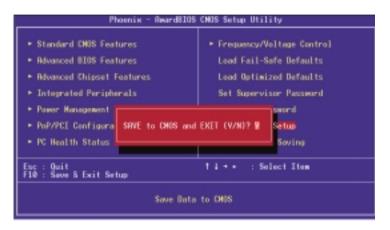

You are asked to verify the password. Type in exactly the same password. If you type in a wrong password, you will be prompted to enter the correct password again. To delete or disable the password function, highlight "Set Supervisor Password" and press <Enter>, instead of typing in a new password. Press the <Esc> key to return to the main menu.

3.1.12 Set User Password

If you want another user to have access only to your system but not to setup, set a user's password with the "System" option selected in the Advanced BIOS Features. If you want a user to enter a password when trying to access setup, set a user's password with the "Setup" option selected in the Advanced BIOS Features.

Using user's password to enter Setup allows a user to access only "Set User Password" that appears in the main menu screen. Access to all other options is denied.

Use the arrow keys to highlight "Set User Password" and press <Enter>.


Type in the password. You are limited to eight characters. When done, the message below will appear:

Confirm Password:

You are asked to verify the password. Type in exactly the same password. If you type in a wrong password, you will be prompted to enter the correct password again. To delete or disable the password function, highlight "Set User Password" and press <Enter>, instead of typing in a new password. Press the <Esc> key to return to the main menu.

3.1.13 Save & Exit Setup

When all the changes have been made, highlight "Save & Exit Setup" and press <Enter>.

Type "Y" and press <Enter>. The modifications you have made will be written into the CMOS memory, and the system will reboot. You will once again see the initial diagnostics on the screen. If you wish to make additional changes to the setup, press <Ctrl> <Alt> <Esc> simultaneously or after memory testing is done.

3.1.14 Exit Without Saving

When you do not want to save the changes you have made, highlight "Exit Without Saving" and press <Enter>.

Type "Y" and press <Enter>. The system will reboot and you will once again see the initial diagnostics on the screen. If you wish to make any changes to the setup, press <Ctrl> <Alt> <Esc> simultaneously or after memory testing is done.

3.2 Updating the BIOS

To update the BIOS, you will need the new BIOS file and a flash utility, AWDFLASH.EXE. Please contact technical support or your sales representative for the files.

- I. Save the new BIOS file along with the flash utility AWDFLASH.EXE to a floppy disk.
- 2. Reboot the system and enter the Award BIOS Setup Utility to set the first boot drive to "Floppy".
- 3. Save the setting and reboot the system.
- 4. After the system booted from the floppy disk, execute the flash utility by typing AWDFLASH.EXE. The following screen will appear:

	ward BIOS Flash Utility V.8. ix Technologies Ltd. All Righ			
(The current BIOS information will appear in this area.)				
File Name to Program :				

5. Type the new BIOS file name onto the gray area that is next to "File Name to Program" then press <Enter>.

6. The following will appear.

Do You Want to Save BIOS (Y/N)

This question refers to the current existing BIOS in your system. We recommend that you save the current BIOS and its flash utility; just in case you need to reinstall the BIOS. To save the current BIOS, press <Y> then enter the file name of the current BIOS. Otherwise, press <N>.

7. The following will then appear.

Press "Y" to Program or "N" to Exit

8. Press <Y> to flash the new BIOS.

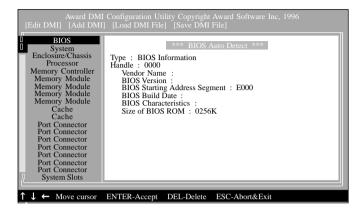
3

4.1 Desktop Management Interface (DMI)

The system board comes with a DMI built into the BIOS. DMI, along with the appropriately networked software, is designed to make inventory, maintenance and troubleshooting of computer systems easier. With DMI, a network administrator or MIS engineer can remotely access some information about a particular computer system without physically going to it. Quite often a service call may be unnecessary as the problem can be solved remotely.

The DMI utility in the BIOS automatically records various information about your system configuration. Information about the type and speed of CPU, type and amount of memory for each memory slot, BIOS revision level, types of add-in PCI boards and components, certain revision numbers of hardware installed, etc. are automatically detected and stored in the DMI pool, which is a part of the system board's Plug and Play BIOS. Additional information, such as ISA based peripherals, which may not be automatically detected, can be manually recorded in the DMI pool by using the Add DMI menu. The DMI pool data is then verified or updated whenever the system hardware or setup is altered.

4.1.1 Running the DMI Utility


To run the DMI utility, type: DMICFG.EXE. Please contact technical support or your sales representative for the utility.

The DMI utility must run in real mode with at least 180K of base memory. Memory managers like HIMEM.SYS (required by Windows) must not be installed. You may do this by using one of the 3 methods listed below.

- Boot up from a system diskette without the AUTOEXEC.BAT and CONFIG.SYS files,
- 2. "REM" HIMEM.SYS in the CONFIG.SYS, or
- 3. Press <F5> during bootup to bypass your AUTOEXEC.BAT and CONFIG.SYS files.

Supported Software

4.1.2 Using the DMI Utility

The four menus located on top of the DMI Configuration Utility screen are Edit DMI, Add DMI, Load DMI File and Save DMI File. Use the \leftarrow or \rightarrow (left or right) arrow keys to select a menu from the Menu bar.

On the left side of the screen is a list of the system configuration items. Use the \uparrow or \downarrow (up or down) arrow keys to select an item.

The commands at the bottom of the screen will allow you to navigate through the various setup menus.

Edit DMI

- I. Use the \leftarrow or \rightarrow arrow keys to select the Edit DMI menu.
- 2. Highlight the item on the left screen that you would like to edit by using the \uparrow or \downarrow arrow keys, then press <Enter>.
- The cursor will move to the screen you select allowing you to edit information. The screen will also display the auto-detected information.
- 4. Press <FI0> to update the edited information into the flash ROM.

Add DMI

- 1. Use the \leftarrow or \rightarrow arrow keys to select the Add DMI menu.
- 2. Highlight the item on the left screen that you would like to add by using the \uparrow or \downarrow arrow keys, then press <Enter>.
- 3. The cursor will move to the screen you select allowing you to enter information about the added item.
- 4. Press <FIO> to save information into the flash ROM.

To view information about the added items, go to the Edit DMI menu.

Load DMI File

- I. Use the \leftarrow or \rightarrow arrow keys to select the Load DMI File menu.
- 2. The following message will appear.

Press [Enter] to select DMI file for load

Press <Enter>.

- 3. The DMI files will appear on the screen. Select the file you would like to load and press <Enter>.
- 4. The following message will appear.

Do you want to execute? (Y/N)

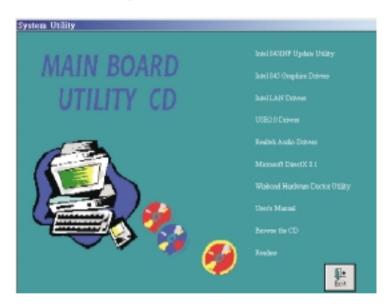
Type <Y>. All previous DMI structures will be destroyed and the new file will be saved into the flash ROM.

Save DMI File

- I. Use the \leftarrow or \rightarrow arrow keys to select the Save DMI File menu.
- 2. The following message will appear.

Press [Enter] to select DMI file for save

Press <Enter>.

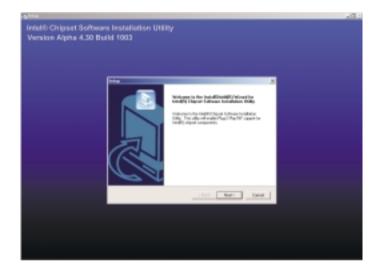

 Enter the directory and filename under which you would like the DMI file saved.

Supported Software

4.2 Drivers, Utilities and Software Applications

The CD that came with the system board contains drivers, utilities and software applications required to enhance the performance of the system board.

Insert the CD into a CD-ROM drive. The autorun screen (Main Board Utility CD) will appear. If after inserting the CD, "Autorun" did not automatically start (which is, the Main Board Utility CD screen did not appear), please go directly to the root directory of the CD and double-click "Setup".

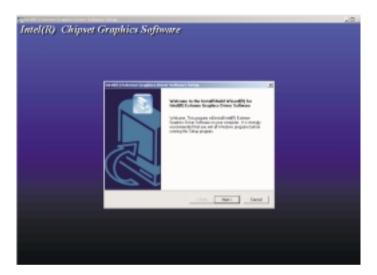


4.2.1 Intel 845 INF Update Utility

The Intel 845 INF Update Utility is used for updating Windows[®] 98SE/ME/2000/XP's INF files so that the Intel chipset can be recognized and configured properly in the system.

To install the utility, please follow the steps below.

1. Click "Intel 845 INF Update Utility". The following screen will appear.


- 2. Follow the prompts on the screen to complete installation.
- 3. Reboot the system for the utility to take effect.

Supported Software

4.2.2 Intel 845 Graphics Drivers

To install the driver, please follow the steps below.

I. Click "Intel 845 Graphics Drivers". The following screen will appear.

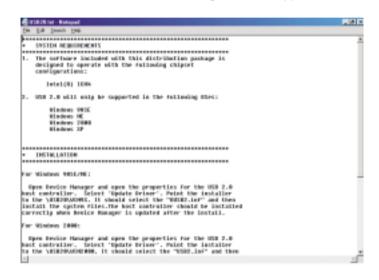
- 2. Follow the prompts on the screen to complete installation.
- 3. Reboot the system for the driver to take effect.

4.2.3 Intel LAN Drivers

To install the driver, please follow the steps below.

I. Click "Intel LAN Drivers". The following screen will appear.

- 2. Follow the prompts on the screen to complete installation.
- 3. Reboot the system for the driver to take effect.


Supported Software

4.2.4 USB 2.0 Drivers

If you are using a USB 2.0 device, you must install the USB 2.0 driver. The drivers are supported in the following operating systems: Windows® 98 SE, Windows® ME, Windows® 2000 and Windows® XP.

To install the driver, please follow the steps below.

I. Click "USB 2.0 Drivers". The following screen will appear.

- 2. Follow the installation instructions shown on the screen.
- 3. Reboot the system for the driver to take effect.

4.2.5 Realtek Audio Drivers

The audio drivers are supported in the following operating systems: Windows® 98SE, Windows® ME, Windows NT® 4.0, Windows® 2000 and Windows® XP.

To install the driver, please follow the steps below.

I. Click "Realtek Audio Drivers". The following screen will appear.

- 2. Follow the prompts on the screen to complete installation.
- 3. Reboot the system for the driver to take effect.

Supported Software

4.2.6 Microsoft DirectX 8.1

To install, please follow the steps below.

I. Click "Microsoft DirectX 8.1". The following screen will appear.

System Utility	
MAIN BOARD	
MAIN DUARD	
UTILITY CD	
Ferreach Dérect & Li Selap	ectri 0. i. De you with to continue? No Derive the CD Peaks Earn

- 2. Click "Yes" to continue.
- 3. Follow the prompts on the screen to complete installation.
- 4. Reboot the system for the driver to take effect.

4.2.7 Winbond Hardware Doctor Utility

The Winbond Hardware Doctor Utility is capable of monitoring the system's hardware conditions such as the temperature of the CPU and system, voltage, and speed of the cooling fans. It also allows you to manually set a range to the items being monitored. If the values are over or under the set range, a warning message will pop-up. The utility can also be configured so that a beeping alarm will sound whenever an error occurs. We recommend that you use the "Default Setting" which is the ideal setting that would keep the system in good working condition.

Note: Use this utility only in Windows[®] 985E, Windows[®] ME, Windows[®] 2000, Windows NT[®] 4.0 or Windows[®] XP operating system.

To install the utility, please follow the steps below.

I. Click "Winbond Hardware Doctor Utility". The screen below will appear.

- 2. Follow the prompts on the screen to complete installation.
- 3. Restart the system.

4.3 Installation Notes

Supported Software

 "Autorun" ONLY supports the Windows[®] 98 SE, Windows[®] ME, Windows[®] 2000, Windows NT[®] 4.0 and Windows[®] XP operating systems. If after inserting the CD, "Autorun" did not automatically start (which is, the Main Board Utility CD screen did not appear), please go directly to the root directory of the CD and double-click "Setup".

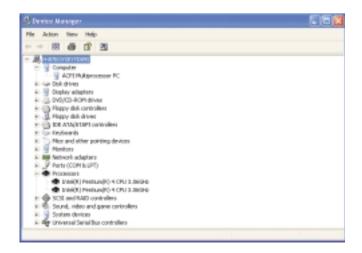
.....

2. All steps or procedures to install software drivers are subject to change without notice as the softwares are occassionally updated. Please contact technical support or your sales representative for the latest version of the drivers or software applications.

Appendix A - Enabling Hyper-Threading Technology

A.I Enabling Hyper-Threading Technology

To enable the functionality of the Hyper-Threading Technology, please follow the requirements and steps below. Basically, the following presumes that you have already installed an Intel[®] Pentium[®] 4 Processor with Hyper-Threading Technology.


- 1. The system requires a minimum of 300 Watt ATX 12V power supply.
- 2. Aside from installing a CPU fan on the Intel[®] Pentium[®] 4 Processor with Hyper-Threading Technology, make sure to install additional cooling fans. The system requires adequate airflow throughout the chassis to prevent overheating the processor.
- 3. The "CPU Hyper-Threading" field in the Advanced BIOS Features submenu of the Award BIOS setup will appear. Make sure this field is set to Enabled.
- Currently, only Windows[®] XP supports the Hyper-Threading Technology. If this OS has been previously installed, you must **REINSTALL** it again.
- 5. After installing Windows[®] XP, please check the following to ensure that the operating system has been properly installed.
 - a. Click Start, point to Settings then click Control Panel.
 - b. Double-click the System icon. The System Properties dialog box will appear.

A Enabling Hyper-Threading Technology

c. Click the General tab. The processor shown under Computer should resemble the one shown below.

System Restore	Automati	o Updates	Remote	
Eeneral Comp	Ant Name	Hedvar	Advarce	
	Sec	lanc .		
		Monatoli Window	102	
		Professional		
		Venior 2082		
		Contract Contract		
		pistaned to:		
		95274-005-53079	00.004.00	
		800-4008-030-9	02/221/09	
	Con	p.hr:		
		IntelF()		
		Pertium(R) 4 CPU	3.06GHz	
		1.05 GHz		
		256 MB of RAM		

d. Now click the Hardware tab then click Device Manager. The items shown under Computer and Processors should resemble the ones shown below.

Enabling Hyper-Threading Technology

e. Lastly, press the <Ctrl> <Alt> and keys simultaneously. The Windows Task Manager dialog box will appear. Click the Performance tab. The diagram under CPU Usage History should resemble the one shown below.

📕 Windows Task Mar	ager		
Pile Options Vew Sh.	t Dorwn Help	,	
Applications Processes	Performance	Networking Users	
CPU Usege	CPU Usopo Hi	story	
-	h	launa a	A contraction
PF Ukage	Page File Line	ge History	
89.7 148			
Tatals		- Husical Memory DC	
Handes	4104	Total	261604
Threads	259	Available	156980
Proceeding	10	System Cadve	152576
Connet: Charge 80		Famel Nenery 80	
Tital	91884	Total	23696
Limit	630892	Faged	16132
Peak	147904	Norpaged	12564
Processes: 10 CPU LA	age: 53%	Cannit Charge: 9	L004K / 63359

B.I Watchdog Timer

The following parameters are references for setting the time interval of the Watchdog Timer function. The system will regularly be "cleared" according to the set time interval. If the system hangs or fails to function, it will also reset according to the time interval so that your system will continue to operate.

mov dx.02e <Enter> mov al.87 <Enter> out dx,al <Enter> out dx.al <Enter> mov dx.02e <Enter> mov al.07 <Enter> out dx,al <Enter> inc dx <Enter> inc al <Enter> out dx.al <Enter> dec dx <Enter> mov al.f6 <Enter> out dx,al <Enter> inc dx <Enter> mov al,xy <Enter> out dx.al <Enter>

"XY" is the Watchdog Time count value for the "00h to "FFh" range wherein the time can be set from 0 sec. to 255 sec.

Appendix C - System Error Message

When the BIOS encounters an error that requires the user to correct something, either a beep code will sound or a message will be displayed in a box in the middle of the screen and the message, PRESS FI TO CONTINUE, CTRL-ALT-ESC or DEL TO ENTER SETUP, will be shown in the information box at the bottom. Enter Setup to correct the error:

C.I POST Beep

There are two kinds of beep codes in the BIOS. One code indicates that a video error has occured and the BIOS cannot initialize the video screen to display any additional information. This beep code consists of a single long beep followed by three short beeps. The other code indicates that a DRAM error has occured. This beep code consists of a single long beep.

C.2 Error Messages

One or more of the following messages may be displayed if the BIOS detects an error during the POST. This list indicates the error messages for all Awards BIOSes:

CMOS BATTERY HAS FAILED

The CMOS battery is no longer functional. It should be replaced.

<u>Caution:</u>

Danger of explosion if battery incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the battery manufacturer's instructions.

CMOS CHECKSUM ERROR

Checksum of CMOS is incorrect. This can indicate that CMOS has become corrupt. This error may have been caused by a weak battery. Check the battery and replace if necessary.

DISPLAY SWITCH IS SET INCORRECTLY

The display switch on the motherboard can be set to either monochrome or color. This indicates the switch is set to a different

System Error Message

setting than indicated in Setup. Determine which setting is correct, either turn off the system and change the jumper or enter Setup and change the VIDEO selection.

FLOPPY DISK(S) fail (80) Unable to reset floppy subsystem.

FLOPPY DISK(S) fail (40) Floppy type mismatch.

Hard Disk(s) fail (80) HDD reset failed.

Hard Disk(s) fail (40) HDD controller diagnostics failed.

Hard Disk(s) fail (20) HDD initialization error.

Hard Disk(s) fail (10) Unable to recalibrate fixed disk.

Hard Disk(s) fail (08) Sector Verify failed.

Keyboard is locked out - Unlock the key

The BIOS detects that the keyboard is locked. Keyboard controller is pulled low.

Keyboard error or no keyboard present

Cannot initialize the keyboard. Make sure the keyboard is attached correctly and no keys are being pressed during the boot.

Manufacturing POST loop

System will repeat POST procedure infinitely while the keyboard controller is pull low. This is also used for the M/B burn in test at the factory.

BIOS ROM checksum error - System halted The checksum of ROM address F0000H-FFFFFH is bad.

Memory test fail

The BIOS reports memory test fail if the memory has error(s).

D.I Troubleshooting Checklist

This chapter of the manual is designed to help you with problems that you may encounter with your personal computer. To efficiently troubleshoot your system, treat each problem individually. This is to ensure an accurate diagnosis of the problem in case a problem has multiple causes.

Some of the most common things to check when you encounter problems while using your system are listed below.

- I. The power switch of each peripheral device is turned on.
- 2. All cables and power cords are tightly connected.
- 3. The electrical outlet to which your peripheral devices are connected is working. Test the outlet by plugging in a lamp or other electrical device.
- 4. The monitor is turned on.
- 5. The display's brightness and contrast controls are adjusted properly.
- 6. All add-in boards in the expansion slots are seated securely.
- 7. Any add-in board you have installed is designed for your system and is set up correctly.

Monitor/Display

If the display screen remains dark after the system is turned on:

- I. Make sure that the monitor's power switch is on.
- 2. Check that one end of the monitor's power cord is properly attached to the monitor and the other end is plugged into a working AC outlet. If necessary, try another outlet.
- 3. Check that the video input cable is properly attached to the monitor and the system's display adapter.
- 4. Adjust the brightness of the display by turning the monitor's brightness control knob.

Troubleshooting

The picture seems to be constantly moving.

- 1. The monitor has lost its vertical sync. Adjust the monitor's vertical sync.
- 2. Move away any objects, such as another monitor or fan, that may be creating a magnetic field around the display.
- 3. Make sure your video card's output frequencies are supported by this monitor.

The screen seems to be constantly wavering.

 If the monitor is close to another monitor, the adjacent monitor may need to be turned off. Fluorescent lights adjacent to the monitor may also cause screen wavering.

Power Supply

When the computer is turned on, nothing happens.

- Check that one end of the AC power cord is plugged into a live outlet and the other end properly plugged into the back of the system.
- 2 Make sure that the voltage selection switch on the back panel is set for the correct type of voltage you are using.
- 3. The power cord may have a "short" or "open". Inspect the cord and install a new one if necessary.

Floppy Drive

The computer cannot access the floppy drive.

- 1. The floppy diskette may not be formatted. Format the diskette and try again.
- 2. The diskette may be write-protected. Use a diskette that is not write-protected.
- 3. You may be writing to the wrong drive. Check the path statement to make sure you are writing to the targeted drive.
- 4. There is not enough space left on the diskette. Use another diskette with adequate storage space.

Hard Drive

Hard disk failure.

I. Make sure the correct drive type for the hard disk drive has been entered in the BIOS.

Troubleshooting

2. If the system is configured with two hard drives, make sure the bootable (first) hard drive is configured as Master and the second hard drive is configured as Slave. The master hard drive must have an active/bootable partition.

Excessively long formatting period.

 If your hard drive takes an excessively long period of time to format, it is likely a cable connection problem. However, if your hard drive has a large capacity, it will take a longer time to format.

Parallel Port

The parallel printer doesn't respond when you try to print.

- 1. Make sure that your printer is turned on and that the printer is on-line.
- 2. Make sure your software is configured for the right type of printer attached.
- 3. Verify that the onboard LPT port's I/O address and IRQ settings are configured correctly.
- 4. Verify that the attached device works by attaching it to a parallel port that is working and configured correctly. If it works, the printer can be assumed to be in good condition. If the printer remains inoperative, replace the printer cable and try again.

Serial Port

The serial device (modem, printer) doesn't output anything or is outputting garbled characters.

- I. Make sure that the serial device's power is turned on and that the device is on-line.
- 2. Verify that the device is plugged into the correct serial port on the rear of the computer.
- 3. Verify that the attached serial device works by attaching it to a serial port that is working and configured correctly. If the serial device does not work, either the cable or the serial device has a problem. If the serial device works, the problem may be due to the onboard I/O or the address setting.
- 4. Make sure the COM settings and I/O address are configured correctly.

Keyboard

Nothing happens when a key on the keyboard was pressed.

- I. Make sure the keyboard is properly connected.
- 2. Make sure there are no objects resting on the keyboard and that no keys are pressed during the booting process.

System Board

- Make sure the add-in card is seated securely in the expansion slot. If the add-in card is loose, power off the system, re-install the card and power up the system.
- 2. Check the jumper settings to ensure that the jumpers are properly set.
- 3. Verify that all memory modules are seated securely into the memory sockets.
- 4. Make sure the memory modules are in the correct locations.
- 5. If the board fails to function, place the board on a flat surface and seat all socketed components. Gently press each component into the socket.
- 6. If you made changes to the BIOS settings, re-enter setup and load the BIOS defaults.