MAIN BOARD USER'S MANUAL FOR MODEL: B637/B638/B639/B640/B641/B642 386SX-AT

Rev. A

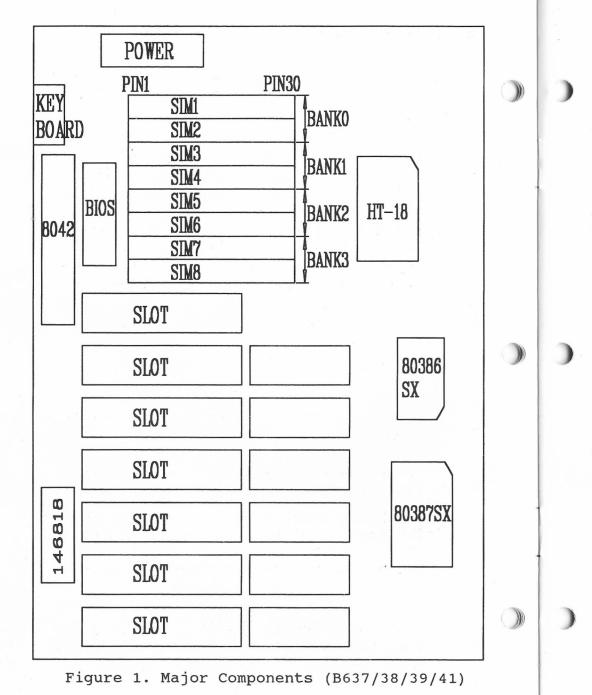
TABLE OF CONTENTS

1.	INTRODUCTION1
2.	SPECIFICATIONS AND FEATURES3
3.	CONFIGURATION5
	3.1 Jumper Setting5
	3.2 On-Board Connectors9
	3.3 External I/O Inteterfaces11
	3.4 Memory Configuration12
4.	NUMERIC PROCESSOR14
5.	SYSTEM I/O ADDRESS MAP15
6.	SYSTEM INTERRUPTS16
7.	ON-BOARD EXPANSION SLOTS17
8.	SYSTEM PERFORMANCE ENHANCEMENT.19
	8.1 EMS19
	8.2 Shadow RAM19

1. INTRODUCTION

LIST OF ILLUSTRATIONS

Figure 1. Major Components (B637/638/639/641).2
Figure 1a Major Components (B640/642).....4
Figure 2. Jumpers & Connectors (B637/38/39/41)8
Figure 2a Jumpers & Connectors (B640/642)....10
Figure 3. Front View of SIM Module.....12
Figure 4. Expansion Bus Connector.....18


This system series Mainboard is an 80386SXbased system that is fully compatible with IBM PC/ AT systems. It is designed for the use of both system integrators and end users. This system board performs 16-bit memory access and supports the 80387SX numeric coprocessor. Thus, it provides greater computational power when used for numerical computations, such as during scientific, engineering and mathematical applications. The B637/B640 operates at 16MHz; the B638 operates at 20MHz; the B639 /B642 operates at 25MHz; and the B641 operates at 33MHz. All six boards support 4 banks of SIM: SIM 1&2 is bank 0; SIM 3&4 is Bank 1; SIM 5&6 is Bank 2; and SIM 7&8 is Bank 3. Thus configured, the system can support from 512KB to 20MB of memory with page interleave modes. The system also supports EMS 4.0 and Shadow RAM operation.

CAUTION:

To conserve battery power, the factory default jumper setting position of Pins 1&2 at JP106 is "short". Therefore, the user should short Pins 2&3 at JP106 position instead of Pins 1&2 prior to initial operation.

1

ii

2. SPECIFICATIONS AND FEATURES:

This system series' Main Boards have the following specifications and features:

-The B637/B640 Main Board operates at 16MHz; the B638 Main Board operates at 20MHz; the B639/B642 Main Board operates at 25MHz; and the B641 Main Board operates at 33MHz. All six use an 80386SX microprocessor, have a full 32bit Internal Architecture and are 100% 80386 code compatible. The series accepts and runs all 32-bit software.

-Hardware supports L-I-M EMS 4.0.

-Contains 2 sets of EMS map register and utilizes a 16KB EMS page size.

-Supports Shadow RAM for System and video BIOS.

-Memory configuration can be from 512KB to 20MB with Interleave support. Memory beyond 16MB can only be used as expanded memory.

-An 80387SX Coprocessor runs synchronous mode.

-Models B637/B638/B639/B641 have six 16bit slots and one 8-bit slot. Models B640 & B642 have six 16-bit slots.

3

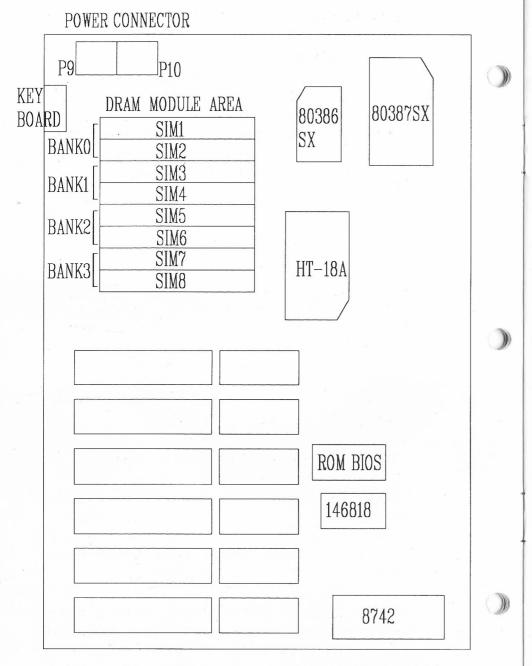


Figure 1a. Major Components of the ${\rm B640/2}$

4

3. CONFIGURATION

3.1 Jumper Setting:

a) Power Good Signal Selector (P7)

Pin 1,2	Short	Signal from Main Board
		(Default)
Pin 2,3	Short	Signal from Switching
	-	Power Supply.

b) Display Adapter Selector (JP103)

Pin	1,2	Short	Color	Grap	phic	Adapte	er
Pin	1,2	Open	Monochr	come	Adap	pter(De	efault)

c) Hardware Turbo Jumper Selection (W2)

	Pin 1-2	Short	Turbo Mode Set
	Pin 1-2	Open	Normal Mode Set
Sec.		(w	turda i i

d) System Configuration CMOS Memory
 (JP106)

Pin 2-3	Short	CMOS IC Connected to Battery Power		
Pin 1-2	Short	Discharge CMOS Memory		

If the system becomes unable to boot up due to an improper setting of the CMOS memory during setup, take the following corrective measures:

- (1) Turn off power.
- (2) Remove the jumper from Pins 2 & 3 at the Jumper 106 position. (This re moves the power supplied by the bat tery.)

- (3) Short Pins 1 & 2 at Jumper 106 posi
 tion with the jumper taken from Pins 2
 & 3. (This discharges the power of
 the CMOS Memory.)
- (4) Now remove the jumper just used to short Pins 2 & 3 at Jumper 106 posi tion and again place it on Pins 2 & 3 at Jumper 106 position.
- (5) Turn the power back on.
- (6) The system CMOS setup value will re turn to the BIOS default value. User can now re-start setup.
- (e) Parity Enable/Disable (P8).

Pin 1-2	Short	DRAM Parity Enabled
Pin 2-3	Short	DRAM Parity Disabled

Selection of "Turbo" or "Normal"mode can be accomplished by CMOS Setup after the power is turned on. However, if the user prefers to change the mode manually through the use of the keyboard, the following procedure should be used:

1. Press and hold down the "CTRL" and "ALT" keys simultaneously.

2. With the two above mentioned keys still depressed, press the gray "+" key to set the "Turbo" mode, or the gray "-" key to set the "Normal" mode.

7

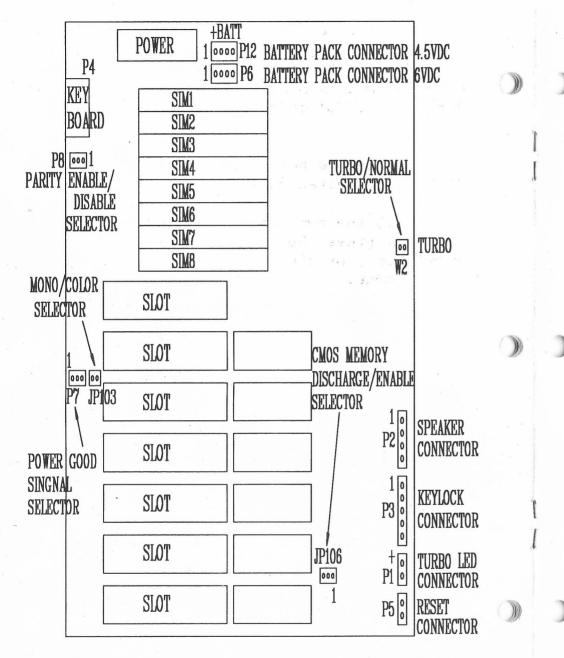


Figure 2. Jumpers & Connectors B637/8/9/641

3.2 On-board Connectors Description

The following section describes the seven connection points found on this board for the various devices and indicators.

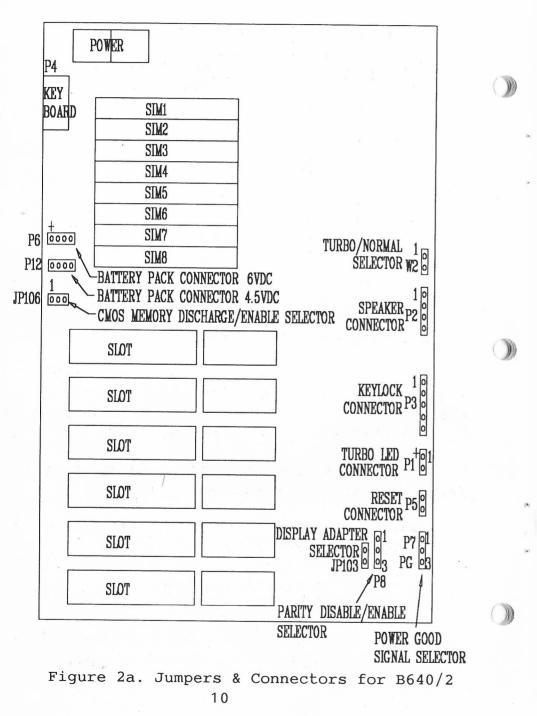
a.) Battery Pack Connector (P6, P12)

Pin	1	4.5VDC (P12)/6VDC	(P6)
Pin	2	Not used	
Pin	3	Gnd	c" 1
Pin	4	Gnd	

b.) Speaker Connector (P2)

Pin	1	Data					
Pin	2	Data	(Same	signal	as	Pin	1)
Pin	3	+5V					
Pin	4	+5V		1			


c.) Power LED & Key Lock Connector (P3)


	Pin	1	LED Power +
			Gnd
	Pin	3	Gnd
-	Pin	4	Keyboard inhibit
	Pin	5	Gnd

d.) Hardware Reset Connector (P5)

Pin	1-2	Short	-	System	reset
Pin	1-2	Open		Reset	disabled

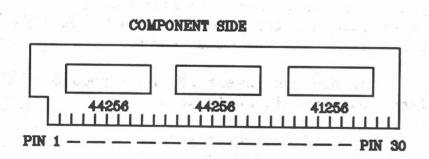
e.) Turbo LED Connector (P1) Pin 1 +5V Pin 2 Signal

PIN	DESCRIPTION
1	POWER GOOD
2,	+5V
3	+12V
4	-12V
5	GND
6	GND
7	GND
8	GND
9	-5V
10	+5V
11	+5V
12	+5V

3.3 External I/O Interfaces

The keyboard interface is the only I/O interface built into this mainboard. Various other external I/O functions can be employed through the use of add-on cards.

The pin assignment of the keyboard interface connector is as follows:


Keyboard	Connector	(P4)		
PIN	DESCRIPTION			
1	KEYBOARD	CLOCK		
2	KEYBOARD	DATA		
3	NOT USED			
4	GND			
5	+5V			

3.4 MEMORY CONFIGURATION

SIMM 1, 2, 3, 4, 5, 6, 7, and 8 are socket SIM type DRAM Modules. Two SIM DRAM modules configure one bank. The DRAM memory configuration can be from 512K up to 20MB. All of these configurations are supported by page only or 2/ 4 way page interleaving mode. Shadow RAM is also supported. To optimize OS/2 operation, fast reset and Gate A20 are also supported.

To install DRAM module please take note of the correct direction sequence. (See Figure #3.)

Caution: RAM Modules may be damaged if they are inserted in an improper direction.

The system supports three types of SIM modules: 256K x 9, 1M x 9, and 4Mx9. The page / interleaved features are accomplished by the combination of SIMM and its individual unit capacity. (Note: B641 must use 70ns DRAM).

Table 3.2, following, shows the possible configurations.

						TABLE	3.2			
RI	EGIS	STE	R BI	ETS	E	RAM TY	YPE			
CR	1 CI	R6 (CR0							
D6	DO	D7	D6	D5	BANKO	BANK1	BANK2	BANK3	TMS	I/L
0	0	0	-0	0	256K				512K	0
þ	0	0	0	1	256K	256K	North Color		1M	2
О	0	0	1	0	256K	256K	256K	·	1.5M	2*
0	0	0	1	1	256K	256K	256K	256K	2M	2x
þ	0	1	0	0	1M				2M	0
þ	0	1	0	1	1M	1M			4M	2
þ	0	1	1	0	1M	1M	1M		6M	2*
þ	0	1	1	1	1M	1M	1M	1M	8M	2x
þ	1	0	0	0	4 M				8M	0
0	1	0	0	1	4M	4M			16M	2
0	1	1	0	1	1M	4M			10M	0
þ	1	1	1	0	1M	4M	4M		18M	2
þ	0	0	1	0	256K	256K	1M		3M	2*
þ	0	0	1	1	256K	256K	1M	1M	5M	2
þ	0	1	1	0	1M	1M	256K		4.5M	2*
1	0	1	1	1	1M	1M	256K	256K	5M	2
1	1	0	1	0	256K	256K	4 M		9M	2*
1	1	0	1	1	256K	256K	4 M	4 M	17M	2
h	1	1	1	0	1M	1M	4 M		12M	2*
1	1	1	1	1	1M	1M	4M	4 M	20M	2

Figure 3. Front View of SIM Module

4. NUMERIC COPROCESSOR

This system contains an option socket for the installation of an 80387SX Floating Point Coprocessor. When installed, this chip--commonly referred to as a `math coprocessor''-substantially increases the speed at which scientific functions and mathematical calculations are processed.

80387SX INSTALLATION

The installation of the above Floating Point Coprocessor chips are handled as follows:

Take notice of the fact that both these chips and the socket are `square'' shaped. Look at both the top and underside of the chip to make sure that it is properly oriented with receptacle socket before inserting it. Also take care to press it into place with even pressure on all sides so as not to bend the chip pins during installation. 5. SYSTEM I/O ADDRESS MAP

The following table shows the standard AT I/O Address Map.

Hex Range	Device					
000-01F	DMA Controller					
020-03F	Interrupt Controller, Master					
040-05F	Timer					
060-06F	8042 Keyboard					
070 - 07F	Real-Time Clock, NMI (Non-					
	Maskable Interrupt)					
080-09F	DMA Page Register					
0A0-0BF	Interrupt Controller					
0C0-0DF	DMA Controller					
0F0	Clear Math Processor Busy					
0F1	Reset Math Coprocessor					
OF8-OFF	Math Coprocessor					
1F0-1F8	Fixed Disk					
200-207	Game I/O					
278-27F	Parallel Printer Port 2					
2F8-2FF	Serial Port 2					
300-31F	Prototype Card					
360-36F	Reserved					
378-37F	Parallel Printer Port 1					
380-38F	SDLC or Bisync 2					
3A0-3AF	Bisync 1					
3B0-3BF	Monochrome Display and Printer					
	Adapter					
3C0-3CE	Local Area Network Controller					
3D0-3DF	Color/Graphics Monitor Adapter					
3F0-3F7	Diskette Controller					
3F8-3FF	Serial Port 1					

Hex 000 to OFF are reserved for the system board I/O. Hex 100 to 3FF are available on the I/O channel.

6. SYSTEM INTERRUPTS

This main board contains programmable interrupt controllers that provide 16 levels of system interrupts. The following list shows the interrupt assignments in descending priority:

Parity of I/O Check NM1 CTLR 2 CTLR 1 IRO 0 Timer Out 0 IRQ 1 Keyboard IRO 2 From CLTR 2 IRQ 8 Clock Interrupt IRQ 9 TO INT OAH IRO 10 Reserved IRQ 11 Reserved IRQ 12 Reserved IRQ 13 Coprocessor

> IRO 14 Hard Disk IRQ 15 Reserved

7. ON-BOARD EXPANSION SLOTS

7. ON-BOARD EXTANSION SHOTS										
	В		A							
GND RESET DRV +5 VDC IRQ9 -5 VDC DRQ2 -12 VDC OWS +12 VDC GND -SMEMW -SMEMW -SMEMR -IOW -IOR -DACK3 DRQ3 -DACK3 DRQ3 -DACK1 DRQ1 -REFRESH SYSCLK IRQ7 IRQ6 IRQ5 IRQ4 IRQ5 IRQ4 IRQ3 -DACK2 T/C BALE +5 VDC OSC GND	1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 8 9 20 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 8 9 10 11 2 8 9 20 11 2 8 9 20 11 2 8 9 20 11 2 8 9 20 11 2 8 9 20 21 2 8 9 20 21 2 8 9 20 21 2 8 9 20 21 2 8 9 20 21 2 8 9 20 21 2 8 9 20 21 2 8 9 20 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-I/O CHECK SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 -I/O CH RDY AEN SA19 SA18 SA19 SA18 SA19 SA18 SA19 SA18 SA17 SA16 SA15 SA14 SA13 SA12 SA14 SA13 SA12 SA11 SA10 SA9 SA8 SA7 SA8 SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0						

IRQ 3 Serial Port 2 IRO 4 Serial Port 1 IRO 5 Parallel Port 2

IRO 7 Parallel Port 1

IRO 6 Diskette-Controller

8. System Performance Enhancement

С D -MEN CS16 -I/0 CS16 2 2 3 3 IRQ10 IRQ11 4 4 IRQ12 5 5 IRQ15 6 6 7 7 IRQ14 -DACKO 8 8 **DRQ0** 9 9 10 -DACK510 DRQ5 11 11 12 12 -DACK6 DRQ6 13 13 -DACK714 14 DRQ7 15 15 +5 VDC 16 16 17 -MASTER 17 GND 18 18

SBHE 🕥 LA23 LA22 LA21 LA20 **LA19 LA18** LA17 -MEMR -MEMW **SD08 SD09 SD10 SD11 SD12 SD13 SD14 SD15**

8.1 EMS

The system main board has a built-in EMS hardware circuit. An EMS program diskette is supplied with the board. For the activation of EMS, on-board memory should exceed 640KB and the EMS memory size must be defined in the extended CMOS setup procedure. The EMS drive program should then be copied to a formatted diskette. With this diskette in drive "A", type the following at the prompt:

> COPY CON:CONFIG.SYS DEVICE=MME.SYS

Once this has been acomplished, re-boot the machine. You should see the following message:

EXPANDED MEMORY MANAGER VERSION 4.0 COPYRIGHT 1989 QUADTEL CORPORATION. ALL RIGHTS RESERVED

TEST MEMORY : XXXX KB

8.2 Shadow RAM

The Shadow Ram function of this board is implemented by simply going to the CMOS Setup Menu and selecting the desired setting. The procedure is accomplished as follows:

Figure 4. Expansion Bus Connector

- Hold down the "CTRL" and "ALT" keys while pressing the "S" key. This will take you to the CMOS Setup Program Menu.
- 2. Using the "Up", "Down", "Left", and "Right" Cursor Keys, move the cursor to the "Shadow RAM" sector.
- 3. Make the appropriate selection in this sector with the cursor.
- Press the "ESC" key. This will cause the system to reboot automatically, with the selected Shadom RAM setting in place.