Chapter 1

Overview

The AX6F is a high-performance Pentium II (Klamath) based system board that utilizes the PCI/ISA architecture and **ATX** form factor. It integrates the Intel **82440FX** PCIset, a **Ultra I/O controller**, and a PCI mode 4 enhanced IDE controller with bus master to enhance system performance. It has **four single in-line memory module (SIMM)** that allows memory up to a maximum of **512MB.** There is no second level cache onboard, since the cache is on the **Pentium II CPU card (connector SLOT1).**

Another feature that AX6F has implemented is **CPU Thermal Protection**. A special circuit is under the CPU heatsink, when temperature is higher than 55 degree C, the CPU speed will automatically slow down and there will be warning from BIOS and also ADM (AOpen Desktop Manager, similar as Intel LDCM), if ADM is installed.

Overview

1.1 Specifications

Form Factor	ATX		
Board Size	305 mm x 244 mm		
CPU	Intel Pentium II (Klamath) Processor		
System Memory	FPM (Fast Page Mode) or EDO (Extended Data Output) 72-pin SIMM x4 maximum 512MB.		
Second-level Cache	On the CPU card (Slot1 connector)		
Chipset	Intel 82440FX PCIset		
Expansion Slots	ISA x4 and PCI x5		
Serial Port	Two serial ports UART 16C550 compatible		
Parallel Port	One parallel port supports standard parallel port (SPP), enhanced parallel port (EPP) or extended capabilities port (ECP).		
Floppy Interface	Floppy interface supports 3.5 inches drives with 720KB, 1.44MB or 2.88MB format or 5.25 inches drives with 360KB, 1.2MB format		
IDE Interface	Dual-channel IDE interface support maximum 4 IDE hard disks or CDROM, mode 4, bus master hard disk drives.		
USB Interface	Two USB ports supported by USB bracket, the BIOS also supports USB driver to simulate legacy keyboard.		
PS/2 Mouse	Mini-Din PS/2 mouse connector onboard.		
Keyboard	Mini-Din PS/2 keyboard connector onboard.		
RTC and Battery	RTC within Super I/O controller. Battery is Lithium (CR-2032).		
BIOS	AWARD Plug-and-Play Flash ROM BIOS		
CPU Thermal Protection	Alarm and slow down CPU speed when temperature is high than 55 degree C.		

Chapter 2

Hardware Installation

This chapter gives you a step-by-step procedure on how to install your system. Follow each section accordingly.

Caution: Electrostatic discharge (ESD) can damage your processor, disk drives, expansion boards, and other components. Always observe the following precautions before you install a system component.

- Do not remove a component from its protective packaging until you are ready to install it.
- 2. Wear a wrist ground strap and attach it to a metal part of the system unit before handling a component. If a wrist strap is not available, maintain contact with the system unit throughout any procedure requiring ESD protection.

2.1 Jumper and Connector Locations

The following figure shows the locations of the jumpers and connectors on the system board:

Jumpers:

JP1,JP2,JP3:	CPU frequency ratio
JP5:	CPU bus clock (chipset)
JP6:	CPU bus clock (clock generator)
JP14:	Clear CMOS

Connectors:

PS2 MS:	PS/2 mouse connector
KB2:	PS/2 keyboard connector
COM1:	COM1 connector
COM2:	COM2 connector
PRINTER:	Printer connector
PWR2:	ATX power connector
USB:	USB connector
FDC:	Floppy drive connector
IDE1:	IDE1 primary channel
IDE2:	IDE2 secondary channel
FAN:	CPU fan connector
IrDA:	IrDA (Infrared) connector
HDD LED:	HDD LED connector
PANEL:	Front panel (Multifunction) connector

2.2 Jumpers

Jumpers are made by pin headers and plastic connecting caps for the purpose of customizing your hardware. Doing so requires basic knowledge of computer hardware, be sure you understand the meaning of the jumpers before you change any setting. The onboard jumpers are normally set to their default with optimized settings.

On the mainboard, normally there is a bold line marked beside pin 1 of the jumper, sometimes, there are numbers also. If we connect (short) plastic cap to pin 1 and 2, we will say set it at 1-2, and when we say jumper is open, that means no plastic cap connected to jumper pins.

Open

Short

Jumper set at 1-

Jumper set at 2-3

2.2.1 Selecting the CPU Frequency

JP1	JP2	<u>JP3</u>	<u>CPU Frequency Rati</u> o
2-3	1-2	2-3	1.5x
1-2	1-2	1-2	2x
1-2	1-2	2-3	2.5x
1-2	2-3	1-2	3x
1-2	2-3	2-3	3.5x
2-3	1-2	1-2	4x
2-3	1-2	2-3	4.5x
2-3	2-3	1-2	5x
2-3	2-3	2-3	5.5x
1-2	1-2	1-2	6x
1-2	1-2	2-3	6.5x
1-2	2-3	1-2	7x
1-2	2-3	2-3	7.5x
2-3	1-2	1-2	8x

Intel Pentium II (Klamath) is designed to have different Internal (Core) and External (Bus) frequency. The ratio of Core/Bus frequency is selected by JP1, JP2 and JP3, which CPU is using to multiply external clock and produce internal frequency.

Core frequency = Ratio * External bus clock

66MHz (default)

60MHz

1-2

2-3

1-2

2-3

JP6 and JP5 are selection of CPU external clock (bus clock). JP6 is actually the selection of clock from clock generator and JP5 is used to inform chipset the CPU bus clock.

Caution: Following table are possible settings of current CPU available on the market. The correct setting may vary because of new CPU product, refer to your CPU specification for more details.

INTEL Pentium II	CPU Core Frequency	Ratio	External Bus Clock	JP3 & JP2 & JP1	JP6 & JP5
Klamath 200	200MHz =	3x	66MHz	1-2 & 2-3 & 1-2	1-2 & 1-2
Klamath 233	233MHz =	3.5x	66MHz	2-3 & 2-3 & 1-2	1-2 & 1-2
Klamath 266	266MHz =	4x	66MHz	1-2 & 1-2 & 2-3	1-2 & 1-2

2.2.2 Setting the CPU Voltage

<u>JP7~JP11</u>	<u>CPU Core Voltag</u> e
Open	CPU voltage auto- detection (default)

JP7~JP11 is reserved for test only and will be removed after mass production. This mainboard supports Pentium II (Klamath) VID function, the CPU core voltage is automatic detected, the range is from 1.3V to 3.5V.

JP11,JP10,JP9,JP8,JP7

1	_					
	0	0	0	0	0	1
	0	0	0	0	0	2
	0	0	0	0	0	3

Open for Auto-detection

2.2.3 Clearing the CMOS <u>JP14</u> **Clear CMOS** You need to clear the CMOS if you forget your 1-2 system password. To clear the CMOS, follow Normal operation the procedures listed below: (default) 2-3 Clear CMOS JP14 JP14 2 2 3 2 ි 3 Normal Operation Clear CMOS (default)

The procedure to clear CMOS:

- 1. Turn off the system power.
- 2. Remove ATX power cable from connector PWR2.
- 3. Locate JP14 and short pins 2-3 for a few seconds.
- 4. Return **JP14** to its normal setting by shorting pins 1-2.
- 5. Connect ATX power cable back to connector PWR2.
- 6. Turn on the system power.
- 7. Press DEL during bootup to enter the BIOS Setup Utility and specify a new password, if needed.

2.3 Connectors

2.3.1 Power Cable

The ATX power supply uses 20-pin connector shown below. Make sure you plug in the right direction.

2.3.2 ATX Soft-Power Switch Connector

The ATX soft-power switch connector is a 2-pin header on the system board. Locate the power switch cable from your ATX housing. It is 2-pin female connector from the housing front panel. Plug this connector to the soft-power switch connector marked **SPWR**.

2.3.3 CPU Fan

Plug in the fan cable to the two-pin fan connector onboard. The fan connector is marked **FAN** on the system board.

2.3.4 PS/2 Mouse

The onboard PS/2 mouse connector is a 6-pin Mini-Din connector marked **PS2 MS**. The view angle of drawing shown here is from back panel of the housing.

2.3.5 Keyboard

The onboard PS/2 keyboard connector is a 6-pin Mini-Din connector marked **KB2**. The view angle of drawing shown here is from back panel of the housing.

2.3.6 Serial Devices (COM1/COM2)

The onboard serial connectors are 9-pin D-type connector on the back panel of mainboard. The serial port 1 connector is marked as **COM1** and the serial port 2 connector is marked as **COM2**.

2.3.7 Printer

The onboard printer connector is a 25-pin D-type connector marked **PRINTER**. The view angle of drawing shown here is from back panel of the housing.

2.3.8 USB Device

You need a USB bracket to have your system to support additional USB device(s). To attach a USB bracket, simply insert the bracket cable to the onboard USB connector marked as **USB**.

Pin	Description	Pin	Description
1	V0	2	V1
3	D0-	4	D1-
5	D0+	6	D1+
7	GND	8	GND
9	NC	10	NC

2.3.9 Floppy Drive

Connect the 34-pin floppy drive cable to the floppy drive connector marked as $\ensuremath{\textbf{FDC}}$ on the system board.

2.3.10 IDE Hard Disk and CD ROM

This mainboard supports two 40 pin IDE connectors marked as **IDE1** and **IDE2**. IDE1 is also known as primary channel and IDE2 as secondary channel, each channel supports two IDE devices that makes total of four devices.

In order to work together, the two devices on each channel must be set differently to master and slave mode, either one can be hard disk or CDROM. The setting as master or slave mode depends on the jumper on your IDE device, please refer to your hard disk and CDROM manual accordingly.

Connect your first IDE hard disk to master mode of the primary channel. If you have second IDE device to install in your system, connect it as slave mode on the same channel, and the third and fourth device can be connected on secondary channel as master and slave mode respectively.

Caution: The specification of IDE cable is maximum 46cm (18 inches), make sure your cable does not excess this length.

Caution: For better signal quality, it is recommended to set far end side device to master mode and follow the suggested sequence to install your new device. Please refer to following figure.

2.3.11 Hard Disk LED

The HDD LED connector is marked as **HDD LED** on the board. This connector is designed for different type of housing, actually only two pins are necessary for the LED. If your housing has four pin connector, simply plug it in. If you have only two pin connector, please connect to pin 1-2 or pin 3-4 according to the polarity.

<u>Pin</u>	Description
1	HDD LED
2	GND
3	GND
4	HDD LED

2.3.12 Panel Connector

The Panel (multifunction) connector is a 20pin connector marked as **PANEL** on the board. Attach the power LED, keylock, speaker, reset switch, suspend switch, and green mode LED connectors to the corresponding pins as shown in the figure.

Some housings have a five-pin connector for the keylock and power LED Since power LED and keylock are aligned together, you can still use this kind of connector.

Other housings may have a 12-pin connector. If your housing has this type of connector, connect it to PANEL as shown in the figure. Make sure that the red wire of the connector is connected to +5V.

Note: If your housing comes with Turbo switch and Turbo LED connectors, you may use these connectors for Suspend switch and Green mode LED functions, respectively.

Note: Pressing the Suspend switch allows you to manually force the system to suspend mode. However, this is possible only if the Power Management function in the BIOS Setup menu is enabled.

2.3.13 IrDA Connector

The IrDA connector can be configured to support wireless infrared module, with this module and application software such as Laplink or Win95 Direct Cable Connection, user can transfer files to or from laptops, notebooks, PDA and printers. This connector supports HPSIR (115.2Kbps, 2 meters), ASK-IR (19.2Kbps) and Fast IR (4Mbps, 2 meters).

Install infrared module onto **IrDA** connector and enable infrared function from BIOS setup, make sure to have correct orientation when you plug onto IrDA connector.

<u>Pin</u>	Description
1	+5V
2	FIRRX
3	IRRX
4	GND
5	IRTX
6	NC

IrDA

2.4 Configuring the System Memory

This mainboard has four 72 pin SIMM sockets (Single-in-line Memory Module) that allow you to install system memory from minimum 4MB up to maximum 512MB.

The SIMM supported by this mainboard can be identified by 4 kinds of factors:

- Size: single side, 1Mx32 (4MB), 4Mx32 (16MB), 16Mx32 (64MB), and double side, 1Mx32x2 (8MB), 4Mx32x2 (32MB), 16Mx32x2 (128MB).
- Speed: 60ns or 70ns access time
- Type: FPM (Fast page mode) or EDO (Extended data output)
- Parity: without parity (32 bit wide) or with parity (36 bit wide).

Because Pentium II processor has 64 bit bus width, the four SIMM sockets are arranged in two banks of two sockets each, they are Bank0 and Bank1. Both SIMMs in each bank must be in the same size and type. It is allowed to have different speed and type in different bank, for example, 70ns FPM in one bank and 60ns EDO in another bank, in such case, each bank is independently optimized for maximum performance. The memory timing requires at least 70ns fast page mode DRAM chip, but for optimum performance, 60ns EDO DRAM is recommended.

Warning: The default memory timing setting is 60ns to obtain the optimal performance. Because of the specification limitation, 70ns SIMM is recommended to be used only for CPU external clock 60MHz.

Tip: EDO DRAM is designed to improve the DRAM read performance. Unlike traditional fast page mode, that tristates the memory output data to start the precharge activity, EDO DRAM holds the memory data valid until the next memory access cycle, which is similar to pipeline effect and reduces one clock state.

There is no jumper setting required for the memory size or type. It is automatically detected by the system BIOS. You can use any single side SIMM combination list below for, and the total memory size is to add them together, the maximum is 512MB.

SIMM1	SIMM2	Subtotal of Bank0
None	None	0MB
4MB	4MB	8MB
8MB	8MB	16MB
16MB	16MB	32MB
32MB	32MB	64MB
64MB	64MB	128MB
128MB	128MB	256MB

SIMM3	SIMM4	Subtotal of Bank1
None	None	0MB
4MB	4MB	8MB
8MB	8MB	16MB
16MB	16MB	32MB
32MB	32MB	64MB
64MB	64MB	128MB
128MB	128MB	256MB

Total Memory Size = Subtotal of Bank0 + Subtotal of Bank1

Caution: Make sure that you install the same SIMM type and size for each bank.

The driving capability of new generation chipset is limited because the lack of memory buffer (to improve performance). This makes DRAM chip count an important factor to be taking into consideration when you install SIMM. Unfortunately, there is no way that BIOS can identified the correct chip count, you need to calculate the chip count by yourself. The simple rule is: By visual inspection, use only SIMM with chip count less than 24 chips.

Warning: Do not install any SIMM that contains more than 24 chips. SIMMs contain more than 24 chips exceed the chipset driving specification. Doing so may result in unstable system behavior.

Tip: The SIMM chip count can be calculated by following example:

- 1. For 32 bit non-parity SIMM using 1M by 4 bit DRAM chip, 32/4=8 chips.
- 2. For 36 bit parity SIMM using 1M by 4 bit DRAM chip, 36/4=9 chips.
- 3. For 36 bit parity SIMM using 1M by 4 bit and 1M by 1 bit DRAM, the chip count will be 8 data chips(8= 32/4) plus 4 parity chips(4=4/1), total is 12 chips.

SIMM Data chip	SIMM Parity chip	Bit size per side	Single/ Double side	Chip count	SIMM size	Recommended
1M by 4	None	1Mx32	x1	8	4MB	Yes
1M by 4	None	1Mx32	x2	16	8MB	Yes
1M by 4	1M by 1	1Mx36	x1	12	4MB	Yes
1M by 4	1M by 4	1Mx36	x1	9	4MB	Yes
1M by 4	1M by 4	1Mx36	x2	18	8MB	Yes
1M by 16	None	1Mx32	x1	2	4MB	Yes
1M by 16	None	1Mx32	x2	4	8MB	Yes
1M by 16	1M by 4	1Mx36	x1	3	4MB	Yes
1M by 16	1M by 4	1Mx36	x2	6	8MB	Yes
4M by 4	None	4Mx32	x1	8	16MB	Yes
4M by 4	None	4Mx32	x2	16	32MB	Yes
4M by 4	4M by 1	4Mx36	x1	12	16MB	Yes
4M by 4	4M by 1	4Mx36	x2	24	32MB	Yes

SIMM Data chip	SIMM Parity chip	Bit size per side	Single/ Double side	Chip count	SIMM size	Recommended
16M by 4	None	16Mx32	x1	8	64MB	Yes, but not tested.
16M by 4	None	16Mx32	x2	16	128MB	Yes, but not tested.
16M by 4	16M by 4	16Mx36	x1	9	64MB	Yes, but not tested.
16M by 4	16M by 4	16Mx36	x2	18	128MB	Yes, but not tested.

Warning: 64MB SIMMs using 16M by 4 bit chip (64M bit technology) are not available in the market and are not formally tested by AOpen quality test department yet. However they are supported by design specification of chipset and they will be tested as soon as they are available. Note that 64MB SIMMs using 16M by 1 bit chip (16M bit technology) have chip count exceed 24 and are strongly not recommended.

Tip: 8 bit = 1 byte, 32 bit = 4 byte. The SIMM size is represented by number of data byte (whether with or without parity), for example, the size of single side SIMM using 1M by 4 bit chip is 1Mx32 bit, that is, $1M \times 4$ byte = 4MB. For double side SIMM, simply multiply it by 2, that is, 8MB.

SIMM Data chip	SIMM Parity chip	Bit size per side	Single/ Double side	Chip count	SIMM size	Recommended
1M by 1	None	1Mx32	x1	32	4MB	No
1M by 1	1M by 1	1Mx36	x1	36	4MB	No
1M by 4	1M by 1	1Mx36	x2	24	8MB	No
4M by 1	None	4Mx32	x1	32	16MB	No
4M by 1	4M by 1	4Mx36	x1	36	16MB	No
16M by 1	None	16Mx32	x1	32	64MB	No
16M by 1	16M by 1	16Mx36	x1	36	64MB	No

Following table are possible DRAM combinations that is **NOT** recommended:

Memory error checking is supported by two modes, parity check or ECC (Error Check and Correction). To use memory error check you need 36 bit SIMM (32 bit data + 4 bit parity or ECC bit). 36 bit parity or ECC SIMMs are automatically detected by BIOS, however you must enter BIOS setup to configure the memory for either parity or ECC mode.

Tip: The parity mode uses 1 parity bit for each byte, normally it is even parity mode, that is, each time the memory data is updated, parity bit will be adjusted to have even count "1" for each byte. When next time, if memory is read with old number of "1", the parity error is occurred and this is called single bit error detection.

Tip: The ECC mode needs 8 ECC bit for 64 bit data, because 36 bit SIMM has 4 bit more for parity, the ECC mode can be supported by two traditional parity SIMMs, it is no need to have special ECC SIMM. Each time memory is accessed, ECC bits are updated and checked by special algorithm, the ECC algorithm has the ability to detect double bit error and automatically correct single bit error.

2.5 PCI Slot

Each PCI slot has four PCI interrupts aligned as listed in the table below. Most of the PCI cards use only one interrupt at location 1 (pin A6), because the chipset supports only 4 PCI interrupts. PCI slot 4 and PCI slot 5 share the same interrupt INTD.

Tip: Since normally PCI VGA does not use interrupt, you may plug VGA card at either slot 4 or slot 5, and the other slot can be used for another PCI card.

PCI Slot	Location 1 (pin A6)	Location 2 (pin B7)	Location 3 (pin A7)	Location 4 (pin B8)
Slot 1	INTA	INTB	INTC	INTD
Slot 2	INTB	INTC	INTD	INTA
Slot 3	INTC	INTD	INTA	INTB
Slot 4	INTD	INTA	INTB	INTC
Slot 5	INTD	INTA	INTB	INTC

Note: The onboard USB ports share PCI INTD too. If you enable "USB Host Controller" in BIOS setup, INTD will be occupied by USB port. That is, PCI slot 4 and slot 5 can only use PCI card that does not need interrupt, such as VGA.

2.6 CPU Thermal Protection

This mainboard implements special thermal protection circuit under the CPU heatsink. When temperature is higher than 55 degree C, the CPU speed will automatically slow down and there will be warning from BIOS and also ADM (AOpen Desktop Manager, similar as Intel LDCM), if ADM is installed.

It is automatically implemented by BIOS and ADM, no hardware installation is needed.

Chapter 3

Award BIOS

This chapter tells how to configure the system parameters. You may update your BIOS via AWARD Flash Utility.

Important: Because the BIOS code is the most often changed part of the mainboard design, the BIOS information contained in this chapter (especially the Chipset Setup parameters) may be a little different compared to the actual BIOS that came with your mainboard.

3.1 Entering the Award BIOS Setup Menu

The BIOS setup utility is a segment of codes/routines residing in the BIOS Flash ROM. This routine allows you to configure the system parameters and save the configuration into the 128 byte CMOS area, (normally in the RTC chip or directly in the main chipset). To enter the BIOS Setup, press during POST (Power-On Self Test). The BIOS Setup Main Menu appears as follows.

ROM PCI/ISA BIOS (XXXXXXXX) CMOS SETUP UTILITY AWARD SOFTWARE, INC.

STANDARD CMOS SETUP	INTEGRATED PERIPHRALS			
BIOS FEATURES SETUP	PASSWORD SETTING			
CHIPSET FEATURES SETUP	IDE HDD AUTO DETECTION			
POWER MANAGEMENT SETUP	SAVE & EXIT SETUP			
PNP/PCI CONFIGURATION SETUP	EXIT WITHOUT SAVING			
LOAD SETUP DEFAULTS				
LOAD TURBO DEFAULTS				
ESC : Quit	$\wedge \downarrow \rightarrow \leftarrow$: Select Item			
F10 : Save & Exit Setup	(Shift) F2 : Change Color			
Description of each function				

Tip: Choose "Load Setup Defaults" for recommended optimal performance. Choose "Load Turbo Defaults" for best performance with light system loading. Refer to section 3.7.

The section at the bottom of the screen tells how to control the screen. Use the arrow keys to move between items, $\[\begin{array}{c} \begin{array}{c} \begin$

After selecting an item, press ENTER to select or enter a submenu.

3.2 Standard CMOS Setup

The "Standard CMOS Setup" sets the basic system parameters such as the date, time, and the hard disk type. Use the arrow keys to highlight an item and $\boxed{\texttt{PGUP}}$ or $\boxed{\texttt{PGDN}}$ to select the value for each item.

Date (mm:dd:yy) :	Wed.	Mar	6 19	96			
Time (hh:mm:ss) :	00:00	:00					
HARD DISK TYPE	SIZE	CYLS	HEAD	PRECOMP	LANDZ	SECTORS	MODE
Primary Master : Auto	0	0	0	0	0	0	AUTO
Primary Slave : Auto	0	0	0	0	0	0	AUTO
Secondary Master: Auto	0	0	0	0	0	0	AUTO
Secondary Slave : Auto	0	0	0	0	0	0	AUTO
Drive A : 1.44M,	3.5 in						
Drive B : None				Bago	Memory	. 64	0 12
			Fv	tended M		1536	0 K
Video · EGA /VGA				Other Me	mory .	384	1 12
VIGEO : EGA/VGA				Other Me	smory .	50-	I K
Halt On : All Err	ors		T	otal Memo	ory :	16384 K	-
ESC : Quit			$\uparrow \downarrow$	$\rightarrow \leftarrow :$	Select	t Item	
F10 : Save & Ex	it Setu	p ((Shift) F2 :	Change	Color	

ROM PCI/ISA BIOS (XXXXXXXX) STANDARD CMOS SETUP AWARD SOFTWARE, INC.

Standard CMOS→ Date

To set the date, highlight the Date parameter. Press $\[\] PGUP$ or $\[\] PGDN$ to set the current date. The date format is month, date, and year.

Standard CMOS → Time

To set the time, highlight the Time parameter. Press PGUP or PGDN to set the current time in hour, minute, and second format. The time is based on the 24 hour military clock.

Standard CMOS→ Primary Master→ Type Standard CMOS→ Primary Slave→ Type Standard CMOS→ Secondary Master→ Type Standard CMOS→ Secondary Slave→ Type

Type
Auto
User
None
1
2
45

This item lets you select the IDE hard disk parameters that your system supports. These parameters are Size, Number of Cylinder, Number of Head, Start Cylinder for Pre-compensation, Cylinder number of Head Landing Zone and Number of Sector per Track. The default setting is **Auto**, which enables BIOS to automatically detect the parameters of installed HDD at POST (Power-On Self Test). If you prefer to enter HDD parameters manually, select User. Select None if no HDD is connected to the system.

The IDE CDROM is always automatically detected.

Tip: For an IDE hard disk, we recommend that you use the "IDE HDD Auto Detection" to enter the drive specifications automatically. See the section "IDE HDD Auto Detection".

Standard CMOS \rightarrow Primary Master \rightarrow Mode Standard CMOS \rightarrow Primary Slave \rightarrow Mode Standard CMOS \rightarrow Secondary Master \rightarrow Mode Standard CMOS \rightarrow Secondary Slave \rightarrow Mode

Mode	
Auto	
Normal	
LBA	
Large	

The enhanced IDE feature allows the system to use a hard disk with a capacity of more than 528MB. This is made possible through the Logical Block Address (LBA) mode translation. The LBA is now considered as a standard feature of current IDE hard disk on the market because of its capability to support capacity larger than 528MB. Note that if HDD is formatted with LBA On, it will not be able to boot with LBA Off.

Standard CMOS \rightarrow Drive A Standard CMOS \rightarrow Drive B

These items select floppy drive type. The available settings and types supported by the mainboard are listed on the left.

Standard CMOS \rightarrow Video

Video
EGA/VGA
CGA40
CGA80
Mono

This item specifies the type of video card in use. The default setting is VGA/EGA. Since current PCs use VGA only, this function is almost useless and may be disregarded in the future.

Standard CMOS \rightarrow Halt On

<u>Halt On</u>
No Errors
All Errors
All, But Keyboard
All. But Diskette

All, But Disk/Key

This parameter enables you to control the system stops in case of Power-On Self Test (POST) error.

3.3 BIOS Features Setup

This screen appears when you select the option "BIOS Features Setup" from the main menu.

ROM PCI/ISA BIOS (XXXXXXXX) BIOS FEATURES SETUP AWARD SOFTWARE, INC.

Virus Warning	: Disabled	Video BIOS Shadow : Enabled
External Cache	: Enabled	C8000-CBFFF Shadow : Disabled
Quick Power On Self Test	: Enabled	CC000-CFFFF Shadow : Disabled
Boot Sequence	: A,C,SCSI	D0000-D3FFF Shadow : Disabled
Swap Floppy Drive	: Disabled	D4000-D7FFF Shadow : Disabled
Boot Up Floppy Seek	: Disabled	D8000-DBFFF Shadow : Disabled
Boot Up NumLock Status	: ON	DC000-DFFFF Shadow : Disabled
Boot Up System Speed	: High	
Typematic Rate Setting	: Disabled	
Typematic Rate (Chars/Sec)	: 6	ESC: Quit $\uparrow \downarrow \rightarrow \leftarrow$: Select Item
Typematic Delay (Msec)	: 250	F1 : Help PU/PD/+/- : Modify
Security Option	: Setup	F5 : Old Values (Shift) F2 : Color
PCI/VGA Palette Snoop	: Disabled	F6 : Load Setup Defaults
OS Select for DRAM > 64MB	: Non-OS/2	F7 : Load Turbo Defaults

BIOS Features → Virus Warning

Virus Warning Enabled	Set this parameter to Enabled to activate the warning message. This feature protects the boot sector and partition table of your hard disk from virus intrusion.
Disabled	Any attempt during boot up to write to the boot sector of the hard disk drive stops the system and the following warning message appears on the screen. Run an anti-virus program to locate the problem.

			! WAI	RNING	!			
	Disk	Boot S	ector	is to	be	mod	lified	
Type "	Y" to	accept	write	e, or	"N"	to	abort	write
		Awar	d Sof	tware,	. In	c.		

BIOS Features → External Cache

External Cache	Enabling this parameter activates the secondary cache
	(currently, PBSRAM cache). Disabling the parameter
Enabled Disabled	slows down the system. Therefore, we recommend that you leave it enabled unless you are troubleshooting a problem.

BIOS Features → Power-On Self-Test

Quick Power-on		
Self-test		
Enable		
Disabled		

This parameter speeds up POST by skipping some items that are normally checked.

BIOS Features → Boot Sequence

Boot Sequence	This parameter allows you to specify the system boot up
A,C,SCSI	search sequence. The hard disk ID are listed below:
C,A,SCSI	C: Primary master
C,CDROM,A	D: Primary clave
CDROM,C,A	D. Filling Slave
D,A,SCSI	E: Secondary master
E,A,SCSI	F: Secondary slave
F,A,SCSI	
SCSI,A,C	
SCSI,C,A	
C only	

BIOS Features → Swap Floppy Drive

Swap Floppy Drive		
Enabled		
Disabled		

This item allows you to swap floppy drives. For example, if you have two floppy drives (A and B), you can assign the first drive as drive B and the second drive as drive A or vice-versa.

BIOS Features → Boot-up Floppy Seek

Boot-up Floppy Seek Enabled	When enabled, the BIOS issues the seek command to the floppy drive during POST to move floppy drive head forward and backward.
Disabled	

BIOS Features → Boot-up NumLock Status

Boot-up NumLock	Setting this parameter to On enables the numeric function
<u>Status</u>	of the numeric keypad. Set this parameter to Off to
On	disregard the function. Disabling the numeric function
Off	allows you to use the numeric keypad for cursor control.

BIOS Features \rightarrow Boot-up System Speed

Boot-up System
Speed
High
Low

Select High or Low system speed after boot.

BIOS Features → Typematic Rate Setting

Typematic Rate	Set this parameter to Enable/Disable the keyboard
Setting	repeat function. When enabled, continually holding down
Enabled	a key on the keyboard will generate repeatedly
Disabled	keystrokes.

BIOS Features \rightarrow Typematic Rate

Typemane Kate		vs you to co	ntroi the spe	ea or rep	eated
6	keystrokes.	The	default	is	30
8	character	s/sec.			
10					
12					
15					
20					
24					
30					

BIOS Features → Typematic Delay

Typematic Delay	This parameter allows you to control the delay time
250	between the first and the second keystroke (where the
500	repeated keystrokes begin). The typematic delay
750	settings are 250, 500, 750, and 1000 msec.
1000	

BIOS Features → Security Option

Security Option Setup System	The System option limits access to both the System boot and BIOS setup. A prompt asking you to enter your password appears on the screen every time you boot the system.
	The Setup option limits access only to BIOS setup.
	To disable the security option, select Password Setting from the main menu, don't type anything and just press <enter>.</enter>

BIOS Features → PCI/VGA Palette Snoop

BIOS Features \rightarrow OS Select for DRAM > 64MB

OS Select for DRAM > 64MB	
OS/2	
Non-OS/2	

Set to OS/2 if your system is utilizing an OS/2 operating system and has a memory size of more than 64 MB.

BIOS Features → Video BIOS Shadow

Video BIOS
<u>Shadow</u>
Enabled
Disabled

VGA BIOS Shadowing means to copy video display card BIOS into the DRAM area. This enhances system performance because DRAM access time is faster than ROM.

BIOS Features → C800-CBFF Shadow BIOS Features → CC00-CFFF Shadow BIOS Features → D000-D3FF Shadow BIOS Features → D400-D7FF Shadow BIOS Features → D800-DBFF Shadow BIOS Features → DC00-DFFF Shadow

C8000-CBFFF
Shadow
Enabled
Disabled

These six items are for shadowing ROM code on other expansion cards. Before you set these parameters, you need to know the specific addresses of that ROM code. If you do not know this information, enable all the ROM shadow settings.

Note: The F000 and E000 segments are always shadowed because BIOS code occupies these areas.

3.4 Chipset Features Setup

The "Chipset Features Setup" includes settings for the chipset dependent features. These features are related to system performance.

ROM PCI/ISA BIOS (XXXXXXXX) CHIPSET FEATURES SETUP AWARD SOFTWARE, INC.

Auto Configuration: Enabled	8-bit I/O Recovery Time :4 16-bit I/O Recovery Time:1
DRAM Speed Selection :70 ns DRAM Read Burst (EDO/FP) :X333/x444 DRAM Write Burst (EDO/FP):X222/x333 DRAM Fast Leadoff :Disabled DRAM RAS# Precharge Time :3 MA Additional Wait State :Disabled RAS# to CAS# Delay :Disabled DRAM Refresh Queue :Enabled DRAM RAS Only Refresh :Disabled Fast DRAM Refresh :Disabled DRAM ECC/Parity Selection:Disabled ISA Bus Clock :PCICLK/4	Memory Hole At 15M-16M :Disabled PCI Passive Release :Disabled PCI Delayed Transaction :Disabled
PCI Burst Write Combine :Enabled PCI-to-DRAM Pipeline :Enabled CPU-to-PCI Write POST :Enabled CPU-to-PCI IDE Posting :Enabled Read-Around-Write :Enabled System BIOS Cacheable :Enabled Video BIOS Cacheable :Disabled	ESC: Quit $\uparrow \downarrow \rightarrow \leftarrow$: Select Item F1 : Help PU/PD/+/- : Modify F5 : Old Values (Shift) F2 : Color F6 : Load Setup Defaults F7 : Load Turbo Defaults

Caution: Make sure you fully understand the items contained in this menu before you try to change anything. You may change the parameter settings to improve system performance. However, it may cause system unstable if the setting are not correct for your system configuration.

Chipset Features → Auto Configuration

Auto Configuration	When Enabled, the DRAM and cache related timing
Enabled	are set to pre-defined value according to CPU type
Disabled	and clock. Select Disable if you want to specify your own DRAM timing.

Chipset Features → DRAM Timing

DRAM Timing	There are two sets of DRAM timing parameters can
60 ns	be automatically set by BIOS, 60ns and 70ns.
70 ns	

Warning: The default memory timing setting is 60ns to get the optimal performance. Because the specification limitation of chipset, 70ns SIMM can only be used with CPU external clock 60MHz. To use 70ns SIMM with 66MHz CPU external clock may result in unstable system behavior.

Chipset Features → DRAM Read Burst (EDO/FP)

DRAM Read Burst (EDO/FP) x444/x444 x333/x444 x222/x333	Read Burst means to read four continuous memory cycles on four predefined addresses from the DRAM. The default value is x222/x333 for 60ns EDO or FPW (Fast Page Mode) DRAM. Which means the 2nd,3rd and 4th memory cycles are 2 CPU clocks for EDO and 3 clocks for FPM. The value of x is the timing of first memory cycle and depends on the "DRAM Fast Leadoff" setting.
--	---

Chipset Features → DRAM Write Burst (EDO/FP)

<u>DRAM Write Burst</u> (EDO/FP)	Write Burst means to write four continuous memory cycles on four predefined addresses to the DRAM.
x444/x444	The default value is x222/x333 for 60ns EDO or FPM
x333/x444	(Fast Page Mode) DRAM. Which means the 2nd,3rd
x333/x333	and 4th memory cycles are 2 CPU clocks for EDO
x222/x333	first memory cycle and depends on the "DRAM Fast
	Leadoff" setting.

Chipset Features → DRAM Fast Leadoff

DRAM Fast Leadoff	This item enable or disable the DRAM Fast Leadoff
Enabled	Timing. If enabled, the first cycle is 7 clocks. If
Disabled	disabled, the first cycle is 8 clocks. The default must be Disabled .

Chipset Features → DRAM RAS#Precharge Time

<u>DRAM RAS</u> <u>Prechatge Time</u>	The RAS Precharge means the timing to inactive RAS and the timing for DRAM to do precharge before next
3 4	RAS can be issued. RAS is the address latch control signal of DRAM row address. The default is 3 clocks for 60ns EDO.

Chipset Features → MA Additional Wait State

MA Additional Wait	To enable or disable one additional MA (DRAM
<u>State</u>	memory address) wait state. The default is Disabled.
Disabled	Enable it if you have heavy loading (many chip count)
Enabled	or lower speed DRAM.

Chipset Features → RAS# to CAS# Delay

RAS# to CAS# Delay	To enable or disable additional RAS# to CAS# delay.
Disabled	The default is Disabled for 60ns DRAM. Enable it if
Enabled	you have heavy loading (many chip count) or 70ns DRAM.

Chipset Features → DRAM Refresh Queue

DRAM Refresh	This it
Queue	of refr
Disabled	queue
Enabled	

This item enable or disable the 4-deep refresh queue of refresh request. If **Enabled**, all refresh requests are queued.

Chipset Features → DRAM RAS Only Refresh

DRAM RAS Only <u>Refresh</u>	This item determines the DRAM refresh type. There are RAS-Only and CAS-before-RAS. The default is
Disabled	Disabled, that is, CAS-before-RASrefresh.
Enabled	

Chipset Features → Fast DRAM Refresh

Fast DRAM Refresh	This item determines the DRAM refresh rate, it should
Disabled	be default Disabled , a faster DRAM refresh rate may
Enabled	slightly reduce performance. If you find your old DRAM is unstable, set this item to Enabled.

Chipset Features → DRAM ECC/Parity Selection

DRAM ECC/Parity Selection	There are three modes of memory error detection or correction, Parity mode, ECC mode and Disable. For
Parity	detail, please refer to section "Configuring the System
ECC	memory" in chapter 2.
Disabled	

Chipset Features → ISA Bus Clock

ISA Bus Clock	This item selects the ISA bus clock. The PCI bus
PCICLK/4	clock is the CPU bus (external) clock divided by 2,
PCICLK/3	PCICLK= CPUCLK/2. For example, CPUCLK=66MHz,
release	PCICLK= 66/2=33MHz, ISA bus CLK=33/4=8.25MHz.

Chipset Features → PCI Burst Write Combine

PCI Burst Write	If Enabled, the back-to-back sequential CPU to PCI
<u>Combine</u>	rite cycles are combined together as a single burst
Enabled	write. Disable it, if you find any PCI card compatibility
Disabled	problem.

Chipset Features → PCI-to-DRAM Pipeline

PCI-to-DRAM	To enable or disable PCI to DRAM pipeline cycle. The
<u>Pipeline</u>	write cycles will be queued in the FIFO or buffer, and
Enabled	CPU can be released to do next job.
Disabled	

Chipset Features → CPU-to-PCI Write Post

CPU-to-PCI Write	To enable or disable CPU to PCI bus post write cycle.
Post	The write cycles will be queued in the FIFO or buffer,
Enabled	and CPU can be released to do next job.
Disabled	

Chipset Features \rightarrow CPU-to-PCI IDE Posting

CPU-to-PCI IDE Posting	To enable or disable CPU to PCI IDE post write cycle. The IDE write cycles will be queued in the FIFO or
Enabled	buffer, and CPU can be released to do next job.
Disabled	Disable it, if you find any IDE compatibility problem.

Chipset Features → Read-Around-Write

Read-Around-Write	If Disabled, all posted write are retired before a CPU
Enabled	or PCI read access can be serviced. Disable it, if you
Disabled	find any PCI card compatibility problem.

Chipset Features → System BIOS Cacheable

System BIOS
Cacheable
Enabled
Disabled

Enabling this item allows you to cache the system BIOS to further enhance system performance.

Chipset Features → Video BIOS Cacheable

<u>Video BIOS</u> Cacheable	Allows the video BIOS to be cached to allow faste video performance.	r
Enabled		
Disabled		

Chipset Features \rightarrow 8 Bit I/O Recovery Time

<u>8 Bit I/O Recovery</u> Time	For some old I/O chips, after the execution of an I/O command, the device requires a certain amount of
1	time (recovery time) before the execution of the next
2	I/O command. Because of new generation CPU and
3	mainboard chipset, the assertion of I/O command is
4	faster, and sometimes shorter than specified I/O
5	recovery time of old I/O devices. This item lets you
6	specify the delay of 8-bit I/O command by count of
7	ISA bus clock. If you find any unstable 8-bit I/O card,
8	you may try to extend the I/O recovery time via this
NA	item. The BIOS default value is 4 ISA clock. If set to
	NA, the chipset will insert 3.5 system clocks.

Chipset Features \rightarrow 16 Bit I/O Recovery Time

<u>16 Bit I/O Recovery</u> <u>Time</u>	The same as 16-bit I/O recovery time. This item lets you specify the recovery time for the execution of 16-
1	bit I/O commands by count of ISA bus clock. If you
2	find any of the installed 16-bit I/O cards unstable, try
3	extending the I/O recovery time via this item. The
4	BIOS default value is 1 ISA clocks. If set to NA, the
NA	chipset will automatically insert 3.5 system clocks.

Chipset Features → Memory Hole At 15M-16M

<u>Memory Hole At</u> <u>15M-16M</u>	This option lets you reserve system memory area for special ISA cards. The chipset accesses code/data of
Enabled Disabled	these areas from the ISA bus directly. Normally, these areas are reserved for memory mapped I/O card.

Chipset Features → PCI Passive Release

PCI Passive Release	This item lets you control the Passive Release
Enabled	function of the PIIX3 chipset (Intel PCI to ISA bridge).
Disabled	This function is used to meet latency of ISA bus
	master. Try to enable or disable it, if you have ISA
	card compatibility problem.

Chipset Features → PCI Delayed Transaction

PCI Delayed	This item lets you control the Delayed Transaction
Transaction	function of the PIIX3 chipset (Intel PCI to ISA bridge).
Enabled	This function is used to meet latency of PCI cycles to
Disabled	or from ISA bus. Try to enable or disable it, if you
Disabled	have ISA card compatibility problem.

3.5 Power Management Setup

The Power Management Setup screen enables you to control the mainboard green features. See the following screen.

ROM PCI/ISA BIOS (XXXXXXXX) POWER MANAGEMENT SETUP AWARD SOFTWARE, INC.

Power Management : Disabled PM Control by APM : Yes Video Off Method : V/H SYNC+Blank Video Off After : Suspend Doze Mode : Disabled Standby Mode : Disabled Suspend Mode : Disabled HDD Power Down : Disabled	** Power Down & Resume from Suspend ** IRQ3 (COM2) : Enabled IRQ4 (COM1) : Enabled IRQ5 (LPT2) : Enabled IRQ6 (Floppy Disk): Enabled IRQ6 (RTC Alarm) : Disabled IRQ9 (IRQ2 Redir) : Enabled IRQ10 (Reserved) : Enabled IRQ11 (Reserved) : Enabled IRQ12 (PS/2 Mouse) : Enabled IRQ13 (Coprocessor): Enabled
	IRQ15 (IDE2) : Enabled
<pre>** Wake Up Events of Doze/Standby ** IRQ3 (COM2) : Enabled IRQ4 (COM1) : Enabled IRQ8 (RTC Alarm) : Disabled IRQ12 (PS/2 Mouse) : Enabled</pre>	ESC: Quit $\uparrow \downarrow \rightarrow \leftarrow$: Select Item F1 : Help PU/PD/+/- : Modify F5 : Old Values (Shift) F2 : Color F6 : Load Setup Defaults F7 : Load Turbo Defaults

Power Management → Power Management

Power Management
Max Saving
Mix Saving
User Defined
Disabled

This function allows you to set the default parameters of power-saving modes. Set to **Disable** to turn off power management function. Set to User Defined to choose your own parameters.

Mode	Doze	Standby	Suspend	HDD Power Down
Min Saving	1 hour	1 hour	1 hour	15 min
Max Saving	1 min	1 min	1 min	1 min

Power Management → PM Controlled by APM

PM Controlled by	If "Max Saving" is selected, you can turn on this item,
APM	transfer power management control to APM
Yes No	(Advanced Power Management) and enhance power saving function. For example, stop CPU internal clock.

Power Management → Video Off Method

Video Off Method	This determines the way that monitor is off. Blank
Blank Screen	Screen writes blanks to video buffer. V/H
V/H SYNC+Blank	SYNC+Blank allows BIOS to control VSYNC and
DPMS	(Display Power Management Standard) monitor. The
	DPMS mode uses DPMS function provided by VGA
	card.

Power Management→ Video Off After

Video Off After	
N/A	
Doze	
Standby	
Suspend	

To turn off video monitor at which power down mode.

Power Management→ Doze Mode

D	Doze Mode		
Di	sabled		
1	Min		
2	Min		
4	Min		
8	Min		
12	Min		
20	Min		
30	Min		
40	Min		
1	Hour		

This item lets you set the period of time after which the system enters into Doze mode. In this mode, the CPU clock slows down. The ratio is specified in the "Throttle Duty Cycle". Any activity detected returns the system to full power. The system activity (or event) is detected by monitoring the IRQ signals.

Power Management → Standby Mode

Standby Mode	This item lets you set the period of time after which
Disabled	the system enters into Standby mode. In this mode,
1 Min	CPU clock slows down, hard disk will be shut off and
2 Min	the monitor power-saving feature activates. Any
4 Min	activity detected returns the system to full power. The
8 Min	system activity (or event) is detected by monitoring
12 Min	the IRQ signals.
20 Min	
30 Min	
40 Min	
1 Hour	

Power Management → Suspend Mode

St	<u>ispend Mode</u>
Di	sabled
1	Min
2	Min
4	Min
8	Min
12	Min
20	Min
30	Min
40	Min
1	Hour

This item lets you set the period of time after which the system enters into Suspend mode. The Suspend mode can be Power On Suspend or Suspend to Hard Drive, selected by "Suspend Mode Option".

Power Management → HDD Power Down

HDD Power Down	
Disabled	b
1 Min	it
	C
15 Min	

This option lets you specify the IDE HDD idle time before the device enters the power down state. This tem is independent from the power states previously described in this section (Standby and Suspend).

** Wake Up Events of Doze and Standby ** Power Management→ IRQ3 (COM2)WakeUp Power Management→ IRQ4 (COM1)WakeUp Power Management→ IRQ8 (RTC Alarm)WakeUp Power Management→ IRQ12 (PS/2 Mouse)WakeUp

IRQ3 (COM2)	To enable or disable the detection of COM port, RTC					
<u>WakeUp</u>	and PS/2 mouse activities for system to wake up					
Enabled	during Doze and Standby. Note that OS2 has					
Disabled	periodically IRQ8 (RTC) interruptions, If IRQ8 is not					
	set to Disabled , OS/2 may fail to go into					
	Doze/Standby/Suspend mode					

```
** Power Down and Resume from Suspend **

Power Management→ IRQ3 (COM2)

Power Management→ IRQ4 (COM1)

Power Management→ IRQ5 (LPT2)

Power Management→ IRQ6 (Floppy Disk)

Power Management→ IRQ9 (IRQ2 Redir)

Power Management→ IRQ10 (Reserved)

Power Management→ IRQ11 (Reserved)

Power Management→ IRQ12 (PS/2 Mouse)

Power Management→ IRQ13 (Coprocessor)

Power Management→ IRQ14 (IDE1)

Power Management→ IRQ15 (IDE2)
```

<u>IRQ3 (COM2)</u>	To enable or disable the detection of IRQ event					
Enabled	power down state transition and for resume from					
Disabled	Suspend mode. Note that OS2 has periodically IRQ8					
Disubicu	(RTC) interruptions, If IRQ8 is not set to Disabled,					
	OS/2 may fail to go into Doze/Standby/Suspend					
	mode.					

3.6 PNP/PCI Configuration Setup

The PNP/PCI Configuration Setup allows you to configure the ISA and PCI devices installed in your system. The following screen appears if you select the option "PNP/PCI Configuration Setup" from the main menu.

PnP OS Installed	: No	PCI IDE IRQ Map To : PCI-Auto	
Resources Controlled By	: Manual	Primary IDE INT# : A	
Reset Configuration Data	a : Disabled	Secondary IDE INT# : B	
TRO 3 assigned to .	PCT/TSA PnP	Used MEM base addr : N/A	
IRQ 4 assigned to :	PCI/ISA PnP	Used MEM Length : 8K	
IRQ 5 assigned to :	PCI/ISA PnP		
IRQ 7 assigned to :	PCI/ISA PnP		
IRQ 9 assigned to :	PCI/ISA PnP		
IRQ 10 assigned to :	PCI/ISA PnP		
IRQ 11 assigned to :	PCI/ISA PnP		
IRQ 12 assigned to :	PCI/ISA PnP		
IRQ 14 assigned to :	PCI/ISA PnP		
IRQ 15 assigned to :	PCI/ISA PnP		
DMA 0 assigned to :	PCI/ISA PnP		
DMA 1 assigned to :	PCI/ISA PnP	ESC: Quit $\uparrow \downarrow \rightarrow \leftarrow$: Select It	em
DMA 3 assigned to :	PCI/ISA PnP	F1 : Help PU/PD/+/- : Modify	
DMA 5 assigned to :	PCI/ISA PnP	F5 : Old Values (Shift) F2 : Color	c
DMA 6 assigned to :	PCI/ISA PnP	F6 : Load Setup Defaults	
DMA 7 assigned to :	PCI/ISA PnP	F7 : Load Turbo Defaults	

ROM PCI/ISA BIOS (XXXXXXXX) PNP/PCI CONFIGURATION SETUP AWARD SOFTWARE, INC.

PNP/PCI Configuration → PnP OS Installed

PnP OS Installed Yes No	Normally, the PnP resources are allocated by BIOS during POST (Power-On Self Test). If you are using a PnP operating system (such as Windows 95), set this item to Yes to inform BIOS to configure only the resources needed for booting (VGA/IDE or SCSI). The rest of system resources will be allocated by PnP operating system.
-------------------------------	---

PNP/PCI Configuration→ Resources Controlled By

Resources Controlled	Setting	this	option	to	Manual	allows	you	to
<u>by</u>	individua	ally as	sign the	IRC	s and DN	IAs to the	e ISA	and
Auto Manual	PCI dev	ices. ation f	Set this unction.	s to	Auto to	enable	the a	uto-

PNP/PCI Configuration → Reset Configuration Data

Reset Config	<u>guration</u>	In case conflict occurs after you assign the I	RQs or
Data		after you configure your system, you can enab	ole this
Enabled		function, allow your system to automatically	reset
Disabled		your configuration and reassign the IRQs.	

```
PNP/PCI Configuration→ IRQ3 (COM2)

PNP/PCI Configuration→ IRQ4 (COM1)

PNP/PCI Configuration→ IRQ5 (Network/Sound or Others)

PNP/PCI Configuration→ IRQ7 (Printer or Others)

PNP/PCI Configuration→ IRQ9 (Video or Others)

PNP/PCI Configuration→ IRQ10 (SCSI or Others)

PNP/PCI Configuration→ IRQ11 (SCSI or Others)

PNP/PCI Configuration→ IRQ12 (PS/2 Mouse)

PNP/PCI Configuration→ IRQ14 (IDE1)

PNP/PCI Configuration→ IRQ15 (IDE2)
```

IRO 3 Legacy ISA PCI/ISA PnP	If your ISA card is not PnP compatible and requires a special IRQ to support its function, set the selected IRQ to Legacy ISA . This setting informs the PnP BIOS to reserve the selected IRQ for the installed legacy ISA card. The default is PCI/ISA PnP . Take note that PCI cards are always PnP compatible (except old PCI IDE card).
------------------------------------	---

PNP/PCI Configuration→ DMA 0 PNP/PCI Configuration→ DMA 1 PNP/PCI Configuration→ DMA 3 PNP/PCI Configuration→ DMA 5 PNP/PCI Configuration→ DMA 6 PNP/PCI Configuration→ DMA 7

<u>DMA 0</u> Legacy ISA PCI/ISA PnP If your ISA card is not PnP compatible and requires a special DMA channel to support its function, set the selected DMA channel to **Legacy ISA**. This setting informs the PnP BIOS to reserve the selected DMA channel for the installed legacy ISA card. The default is **PCI/ISA PnP**. Take note that PCI card does not require DMA channel.

PNP/PCI Configuration→ PCI IDE IRQ Map To

PCI IDE IRQ Map	Some old PCI IDE add-on cards are not fully PnP
To	compatible. These cards require you to specify the
ISA	slot in use to enable BIOS to properly configure the
PCI-Slot1	PnP resources. This function allows you to select the
PCI-Slot2	PCI slot for any PCI IDE add-on card present in your
PCI-Slot3	system. Set this item to Auto to allow BIOS to
PCI-Slot4	automatically configure the installed PCI IDE card(s).
PCI-Auto	

PNP/PCI Configuration→ Primary IDE INT# PNP/PCI Configuration→ Secondary IDE INT#

Primary IDE INT#	These two items, in conjunction with item "PCI IDE
Α	IRQ Map To", specify the IRQ routing of the primary
В	or secondary channel of the PCI IDE add-on card (not
	the onboard IDE). Each PCI slot has four PCI
	interrupts aligned as listed in the table below. You
D	must specify the slot in the "PCI IDE IRQ Map To",
	and set the PCI interrupt (INTx) here according to the
	interrupt connection on the card.

PCI Slot	Location 1 (pin A6)	Location 2 (pin B7)	Location 3 (pin A7)	Location 4 (pin B8)
Slot 1	INTA	INTB	INTC	INTD
Slot 2	INTB	INTC	INTD	INTA
Slot 3	INTC	INTD	INTA	INTB
Slot 4	INTD	INTA	INTB	INTC
Slot 5 (if any)	INTD	INTA	INTB	INTC

PNP/PCI Configuration→ Used MEM BaseAddr

Used MEM base addr
N/A
C800
CC00
D000
D400
D800
DC00

This item, in conjunction with the "Used MEM Length", lets you set a memory space for non-PnP compatible ISA card. This item specifies the memory base (start address) of the reserved memory space. The memory size is specified in the "Used MEM Length".

PNP/PCI Configuration→ Used MEM Length

Used MEM Lengtl	h
8K	
16K	
32K	
64K	

If your ISA card is not PnP compatible and requires special memory space to support its function, specify the memory size in this parameter to inform the PnP BIOS to reserve the specified memory space for installed legacy ISA card.

3.7 Load Setup Defaults

The "Load Setup Defaults" option loads optimized settings for optimum system performance. Optimal settings are relatively safer than the Turbo settings. We recommend you to use the Optimal settings if your system has large memory size and fully loaded with add-on card (for example, a file server using double-sided 8MB SIMM x4 and SCSI plus Network card occupying the PCI and ISA slots).

Optimal is not the slowest setting for this mainboard. If you need to verify a unstable problem, you may manually set the parameter in the "BIOS Features Setup" and "Chipset Features Setup" to get slowest and safer setting.

3.8 Load Turbo Defaults

The "Load Turbo Defaults" option gives better performance than Optimal values. However, Turbo values may not be the best setting of this mainboard but these values are qualified by the AOpen RD and QA department as the reliable settings especially if you have limited loading of add-on card and memory size (for example, a system that contains only a VGA/Sound card and two SIMMs).

To attain the best system performance, you may manually set the parameters in the "Chipset Features Setup" to get proprietary setting. Make sure that you know and understand the functions of every item in Chipset Setup menu. The performance difference of Turbo from Optimal is normally around 3% to 10%, depending on the chipset and the application.

3.9 Integrated Peripherals

The following screen appears if you select the option "Integrated Peripherals" from the main menu. This option allows you to configure the I/O features.

ROM PCI/ISA BIOS (XXXXXXXX) INTEGRATED PERIPHERALS AWARD SOFTWARE, INC.

IDE HDD Block Mode:	: Enabled	ECP Mode Use DMA : 3
IDE Primary Master PIO IDE Primary Slave PIO IDE Secondary Master PIO IDE Secondary Slave PIO On-Chip Primary PCI-IDE On-Chip Secondary PCI-IDE USB Host Controller	: Auto : Auto : Auto : Enabled : Enabled : Disabled	
USB Legacy Support	: Disabled	
Onboard FDC Controller Onboard Serial Port 1 Onboard Serial Port 2	: Enabled : AUTO : AUTO	ESC: Quit ↑↓→← : Select Item F1 : Help PU/PD/+/- : Modify
Onboard IR Controller IR Mode IR Address Selection	: Enabled : HPSIR : 2E8H	F5 : Old Values (Shift) F2 : Color F6 : Load Setup Defaults F7 : Load Turbo Defaults
IR IRQ Selection	: IRQ10	
FIR Mode Use DMA	: Disabled	
Modem Wake Up	: Disabled	
Onboard Parallel Port	: 378/IRQ7	
Parallel Port Mode	: SPP	

Integrated Peripherals→ IDE HDD Block Mode

<u>IDE HDD Block</u> Mode	This feature enhances disk performance by allowing multisector data transfers and eliminates the interrupt	
Enabled	handling time for each sector. Most IDE drives,	
Disabled	except with old designs, can support this feature.	

Integrated Peripherals → IDE Primary Master PIO Integrated Peripherals → IDE Primary Slave PIO Integrated Peripherals → IDE Secondary Master PIO Integrated Peripherals → IDE Secondary Slave PIO

IDE Primary Master	Setting this item to Auto activates the HDD speed
<u>PIO</u>	auto-detect function. The PIO mode specifies the
Auto	data transfer rate of HDD. For example: mode 0
Mode 1	data transfer rate is 3.3MB/s, mode 1 is 5.2MB/s,
Mode 2	mode 2 is 8.3MB/s, mode 3 is 11.1MB/s and mode 4
Mode 3	is 16.6MB/s. If your hard disk performance becomes
Mode 4	unstable, you may manually try the slower mode.

Caution: It is recommended that you connect the first IDE device of each channel to the endmost connector of the IDE cable. Refer to section "Connectors" for details on how to connect IDE device(s).

Integrated Peripherals → On-Chip Primary PCI IDE Integrated Peripherals → On-Chip Secondary PCI IDE

On-Chip Primary
PCI IDE
Enabled
Disabled

This parameter lets you enable or disable the IDE device connected to the primary IDE connector.

USB Host Controller
Enabled
Disabled

This item lets you enable or disable the USB controller within the chipset.

Integrated Peripherals → USB Legacy Support

<u>USB Legacy Support</u> Enabled Disabled	This item lets you enable or disable the USB keyboard driver within the onboard BIOS. The keyboard driver simulates legacy keyboard command and let you use USB keyboard during POST or after boot if you don't have USB driver in the operating system.
--	--

Caution: You can not use both USB driver and USB legacy keyboard at the same time. Disable "USB Legacy Support" if you have USB driver in the operating system.

Integrated Peripherals→ Onboard FDC Controller

<u>Onboard FDC</u> <u>Controller</u>	Setting this parameter to Enabled allows you to connect your floppy disk drives to the onboard floppy
Enabled Disabled	disk connector instead of a separate controller card. Change the setting to Disabled if you want to use a separate controller card.

Integrated Peripherals → Onboard Serial Port 1 Integrated Peripherals → Onboard Serial Port 2

Onboard Serial Port
<u>1</u>
Auto
3F8/IRQ4
2F8/IRQ3
3E8/IRQ4
2E8/IRQ3
Disabled

This item allow you to assign address and interrupt for the board serial port. Default is **Auto**.

Note: If you are using an network card, make sure that the interrupt does not conflict.

Integrated Peripherals → Onboard IR Controller

<u>Onboard IR</u>
<u>Controller</u>
Enabled
Disabled

To enable or disable onboard wireless Infrared controller.

Integrated Peripherals \rightarrow IR Mode

IR Mode ASKIR IrDA	This item selects the mode of onboard wireless Infrared controller. The IrDA standard includes both HPSIR and FIR, the driver in the Win95 will automatically change to different mode according to
	automatically change to different mode according to different chip.

- ASKIR Select this setting if you installed an Infrared module via IrDA connector (refer to section 2.3 "Connectors "). This ASKIR setting allows infrared serial communication at a maximum baud rate of 19.2K baud.
- HPSIR Select this setting if you installed an Infrared module in your system via IrDA connector (refer to section 2.3 "Connectors"). The HPSIR setting allows infrared serial communication at a maximum baud rate of 115K baud.
- FIR Select this setting if you installed an Infrared module via IrDA connector (refer to section 2.3 "Connectors "). This FIR (Fast IR) setting allows infrared serial communication at a maximum baud rate of 4M baud.

Integrated Peripherals → IR Address Selection

IR Address Selection	This item selects the address of IR controller.
2E0H	
2E8H	
2F8H	
3E0H	
3E8H	
3F8H	

Integrated Peripherals → IR IRQ Selection

Note: If you are using a network card, make sure that the interrupt does not conflict.

Integrated Peripherals → FIR Mode Use DMA

This item selects the DMA channel of Fast IR port.

Note: If you are using a sound card, make sure that the interrupt does not conflict.

Integrated Peripherals → Modem Wake Up

To enable or disable Modem Wake Up function.

Note: This function is only for internal test only.

Integrated Peripherals ightarrow Onboard Parallel Port

Onboard Parallel
<u>Port</u>
3BC/IRQ7
378/IRQ7
278/IRQ7
Disabled

This item controls the onboard parallel port address and interrupt.

Note: If you are using an I/O card with a parallel port, make sure that the addresses and IRQ do not conflict.

Integrated Peripherals → ECP Mode Use DMA

ECP Mode Use DMA
3
1

This item lets you set the DMA channel of ECP mode.

3.10 Password Setting

Password prevents unauthorized use of your computer. If you set a password, the system prompts for the correct password before boot or access to Setup.

To set a password:

- 1. At the prompt, type your password. Your password can be up to 8 alphanumeric characters. When you type the characters, they appear as asterisks on the password screen box.
- 2. After typing the password, press.
- 3. At the next prompt, re-type your password and press again to confirm the new password. After the password entry, the screen automatically reverts to the main screen.

To disable the password, press when prompted to enter the password. The screen displays a message confirming that the password has been disabled.

3.11 IDE HDD Auto Detection

If your system has an IDE hard drive, you can use this function to detect its parameters and enter them into the "Standard CMOS Setup" automatically.

This routine only detects one set of parameters for your IDE hard drive. Some IDE drives can use more than one set of parameters. If your hard disk is formatted using different parameters than those detected, you have to enter the parameters manually. If the parameters listed do not match the ones used to format the disk, the information on that disk will not be accessible. If the auto-detected parameters displayed do not match those that used for your drive, ignore them. Type N to reject the values and enter the correct ones manually from the Standard CMOS Setup screen.

3.12 Save & Exit Setup

This function automatically saves all CMOS values before leaving Setup.

3.13 Exit without Saving

Use this function to exit Setup without saving the CMOS value changes. Do not use this option if you want to save the new configuration.

3.14 NCR SCSI BIOS and Drivers

The NCR 53C810 SCSI BIOS resides in the same flash memory chip as the system BIOS. The onboard NCR SCSI BIOS is used to support NCR 53C810 SCSI control card without BIOS code.

The NCR SCSI BIOS directly supports DOS, Windows 3.1 and OS/2. For better system performance, you may use the drivers that come with the NCR SCSI card or with your operating system. For details, refer to the installation manual of your NCR 53C810 SCSI card.

3.15 AWARD BIOS Fash Utility

The AWARD Flash utility allows you to upgrade the system BIOS. To get the AWARD Flash utility and the upgrade BIOS file, contact your local distributor or visit our homepage at **http://www.aopen.com.tw**. Please make sure that you have the correct BIOS ready, the BIOS filename is normally like AX6FR100.BIN, which means model AX6F BIOS revision 1.00.

There are three useful programs, Onboard IO chip check utility, Checksum utility CHECKSUM.EXE and AWARD Flash utility AWDFLASH.EXE. Follow the procedures below to upgrade your BIOS.

[CHECKSUM.EXE]

This utility will help you to determine if the BIOS has been downloaded correctly or not.

1. Execute

C:> CHECKSUM Biosfile.bin

Biosfile.bin is the filename of the BIOS code.

- 2. The utility will show "Checksum is ssss".
- Compare the "ssss" with original checksum posted on Web or BBS. If they are different, please do not proceed any further and try to download the BIOS again.

[IO.EXE]

This utility will help you to determine the model of onboard IO chip, as well as BIOS version. Make sure the BIOS you download supports the onboard IO chip and the BIOS version is later than the current onboard BIOS.

1. Execute

C:> IO

[AWDFLASH.EXE]

This utility will try to reprogram your system BIOS by using flash memory technology. It will permanently replace your original BIOS content after flashing.

- 1. Bootup the system from DOS prompt without loading any memory manager (HIMEM, EMM386, QEMM386, ...).
- 2. Execute

C:> AWDFLASH Biosfile.bin Biosfile.bin is the filename of the BIOS code.

- After loading the new BIOS code, the utility will prompt you to save original BIOS code into your HDD or floppy. Please press "Y" to store it as "BIOS.OLD".
- 4. After the old BIOS has been successfully saved, press "Y" to replace BIOS.
- 5. DO NOT turn off the power during "FLASHING".
- 6. Reboot the system by turn off the power after "FLASHING".
- 7. Press "DEL" key to enter BIOS setup during POST.
- 8. Reload the "BIOS SETUP DEFAULT" and reconfigure other items as previous set.
- 9. Save & Exit. Done!

Warning: DO NOT turn off the power during "FLASHING". If the BIOS programming is not successfully finished, the system will not be boot again, and you may need to physically replace the BIOS chip.

Tip: You may load back original BIOS "BIOS.OLD" by the same procedure.

Appendix A

Jumper Table Summary

Selecting the CPU Frequency

<u>JP1</u>	<u>JP2</u>	<u>JP3</u>	<u>CPU Frequency</u>	<u>JP6</u>	<u>JP5</u>	CPU External
			<u>Ratio</u>			<u>Clock</u>
2-3	1-2	2-3	1.5x	1-2	1-2	66MHz (default)
1-2	1-2	1-2	2x	2-3	2-3	60MHz
1-2	1-2	2-3	2.5x			
1-2	2-3	1-2	3x			
1-2	2-3	2-3	3.5x			
2-3	1-2	1-2	4x			
2-3	1-2	2-3	4.5x			
2-3	2-3	1-2	5x			
2-3	2-3	2-3	5.5x			
1-2	1-2	1-2	6x			
1-2	1-2	2-3	6.5x			
1-2	2-3	1-2	7x			
1-2	2-3	2-3	7.5x			
2-3	1-2	1-2	8x			

INTEL Pentium II	CPU Core Frequency	Ratio	External Bus Clock	JP3 & JP2 & JP1	JP6 & JP5
Klamath 200	200MHz =	3x	66MHz	1-2 & 2-3 & 1-2	1-2 & 1-2
Klamath 233	233MHz =	3.5x	66MHz	2-3 & 2-3 & 1-2	1-2 & 1-2
Klamath 266	266MHz =	4x	66MHz	1-2 & 1-2 & 2-3	1-2 & 1-2

Jumper Table Summary

Clear CMOS

<u>JP14</u>	Clear CMOS
1-2	Normal operation (default)
2-3	Clear CMOS

A-2