Overview

DOC. NO.: AX4T2133-OL-E0203A

What's in this manual

AX4T II-133	
What's in this manual	2
You Must Notice	8
Before You Start	9
Overview	10
Feature Highlight	11
Quick Installation Procedure	14
Motherboard Map	15
Block Diagram	16
Hardware Installation	17
About "User Upgrade Optional" and "Manufacture Upgrade Optional"	18
JP14 Clear CMOS Data	19
CPU Installation	20
CPU Jumper-less Design	22
CPU and Housing Fan Connector (with H/W Monitoring)	25
RIMM Sockets	27
Front Panel Connector	31
ATX Power Connector	32

	AC Power Auto Recovery	33
	IDE and Floppy Connector	34
N	ATA/133 Supported	36
	IrDA Connector	37
	AGP (Accelerated Graphic Port) Expansion Slot	38
	AGP Protection Technology	39
	CNR (Communication and Network Riser) Expansion Slot	40
	Support Intel® PRO/100 Network Connection	41
	PC99 Color Coded Back Panel	42
	JP28 Keyboard/Mouse Wakeup Select Jumper	43
	Support 2nd USB Port	44
	Chassis Intrusion Sensor	45
	CD Audio Connector	46
	Modem Audio Connector	47
	Front Audio Connector	48
	Battery-less and Long Life Design	49
	Over-current Protection	50
	Hardware Monitoring	51
	Resettable Fuse	52

Low ESR Capacitor53	
Layout (Frequency Isolation Wall)55	i
Pure Aluminum Heatsink	i
Driver and Utility	57
Auto-run Menu from Bonus CD Disc58	í
Eliminate "?" mark from Windows 95/9859	ı
Installing Intel IAA Driver	1
Installing Onboard LAN Driver61	
Installing Onboard Sound Driver	
Install ATA/133 Driver63	1
Installing Hardware Monitoring Utility69	į
ACPI Suspend to Hard Drive70	į
ACPI Suspend to RAM (STR)74	
Phoenix-AWARD BIOS	76
About BIOS Function Description	,
How To Use Award™ BIOS Setup Program78	l
How To Enter BIOS Setup80	i
BIOS Upgrade under Windows environment81	
Overclocking	83

VGA Card & Hard Disk	84
Glossary	85
AC97	85
ACPI (Advanced Configuration & Power Interface)	85
AGP (Accelerated Graphic Port)	85
AMR (Audio/Modem Riser)	86
AOpen Bonus Pack CD	86
APM (Advanced Power Management)	86
ATA (AT Attachment)	86
ATA/66	86
ATA/100	87
BIOS (Basic Input/Output System)	87
Bus Master IDE (DMA mode)	87
CNR (Communication and Networking Riser)	87
CODEC (Coding and Decoding)	88
DDR (Double Data Rated) SDRAM	88
DIMM (Dual In Line Memory Module)	88
DMA (Direct Memory Access)	88
ECC (Error Checking and Correction)	89

EDO (Extended Data Output) Memory	8
EEPROM (Electronic Erasable Programmable ROM)	8
EPROM (Erasable Programmable ROM)	8
EV6 Bus	9
FCC DoC (Declaration of Conformity)	9
FC-PGA (Flip Chip-Pin Grid Array)	9
Flash ROM	9
FSB (Front Side Bus) Clock	9
fC Bus	9
IEEE 1394	9
Parity Bit	92
PBSRAM (Pipelined Burst SRAM)	92
PC-100 DIMM	92
PC-133 DIMM	92
PC-1600 or PC-2100 DDR DRAM	9
PCI (Peripheral Component Interface) Bus	9
PDF Format	9
PnP (Plug and Play)	9
POST (Power-On Self Test)	9

RDRAM (Rambus DRAM)	94
RIMM (Rambus Inline Memory Module)	94
SDRAM (Synchronous DRAM)	94
Shadow E ² PROM	95
SIMM (Single In Line Memory Module)	95
SMBus (System Management Bus)	95
SPD (Serial Presence Detect)	95
Ultra DMA	96
USB (Universal Serial Bus)	96
VCM (Virtual Channel Memory)	97
ZIP file	
roubleshooting	98
echnical Support	102
Product Registration	105
low to Contact Us	10 <i>6</i>

You Must Notice

Adobe, the Adobe logo, Acrobat is trademarks of Adobe Systems Incorporated.

AMD, the AMD logo, Athlon and Duron are trademarks of Advanced Micro Devices, Inc.

Intel, the Intel logo, Intel Celeron, Pentium II, Pentium III are trademarks of Intel Corporation.

Microsoft, Windows, and Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All product and brand names used on this manual are used for identification purposes only and may be the registered trademarks of their respective owners.

All of the specifications and information contained in this manual are subject to change without notice. AOpen reserves the right to revise this publication and to make reasonable changes. AOpen assumes no responsibility for any errors or inaccuracies that may appear in this manual, including the products and software described in it.

This documentation is protected by copyright law. All rights are reserved.

No part of this document may be used or reproduced in any form or by any means, or stored in a database or retrieval system without prior written permission from AOpen Corporation.

Copyright® 1996-2002, AOpen Inc. All Rights Reserved.

Before You Start

This Online Manual will introduce to the user how this product is installed. All useful information will be described in later chapters. Please keep this manual carefully for future upgrades or system configuration changes. This Online Manual is saved in <u>PDF format</u>, we recommend using Adobe Acrobat Reader 4.0 for online viewing, it is included in <u>Bonus CD</u> or you can get free download from Adobe web site.

Although this Online Manual is optimized for screen viewing, it is still capable for hardcopy printing, you can print it by A4 paper size and set 2 pages per A4 sheet on your printer. To do so, choose **File > Page Setup** and follow the instruction of your printer driver.

Thanks for the help of saving our earth.

AX4T II-133

Overview

Thank you for choosing AOpen AX4T II-133 motherboard. This motherboard is Intel® Pentium 4 (Willamette/Northwood) motherboard (M/B) based on the ATX form featuring the Intel® 850E chipset. As high performance chipset built in the M/B, AX4T II-133 supports Intel® Pentium® 4 1.4GHz~2.4GHz CPU. With Intel® QDR (Quad Data Rate) technology, AX4T II-133 supports 400/533MHz Front Side Bus (FSB) clock and provides up to 3.2GB/s data bandwidth between CPU and chipset. In AGP performance, it has one AGP slot and supports AGP 4X mode and pipelined spilt-transaction long burst transfer up to 1066MB/sec. The MCH component provides Direct RDRAM interface that has dual Direct RDRAM channels support PC-600/800/1066 RDRAM operation and maximum up to 2GB. The on-board IDE controller supports Ultra DMA 33/66/100/133 mode. Further flexibility can be achieved by taking advantage of the Communication and Network Riser (CNR) card option that allows audio and modem configuration on a single baseboard design. Besides, AX4T II-133 has an AC97 CODEC chipset

onboard, providing high performance and magic surround stereo sound to let people enjoy working with it. Now, let's enjoy all features from AOpen AX4T

II-133.

Feature Highlight

CPU

Supports Intel® Socket 478 Pentium® 4 1.4GHz~2.4GHz with 400/533MHz system bus designed for Socket 478 technology.

Chipset

The Intel® 850E chipset supports dual-channel RDRAM memory, delivering the most performance and headroom to maximize the performance of Pentium 4 processor-based systems. Its Memory Control Hub (MCH) delivers dual RDRAM memory channels and a 400/533 MHz system bus, providing the latest graphics support through 1.5V AGP4X technology. The enhanced I/O Controller Hub (ICH2) delivers twice the I/O bandwidth over traditional bridge architecture and provides dedicated data paths to fully optimize the additional bandwidth.

Expansion Slots

Including five 32-bit/33MHz PCI, one CNR and one AGP slots. The PCI local bus throughput can be up to 132MB/s. The Communication & Nectworking Riser (CNR) slot provided from AX4T II-133 supports CNR interface for a Modem/Audio card. The Accelerated Graphics Port (AGP) specification provides a new level of video display sophistication and speed. The AGP video cards support data transfer rate up to 1066MB/s. As AX4T II-133 motherboard includes one AGP expansion slot for a bus mastering AGP graphic card, for AD and SBA signaling, AX4T II-133 can support AGP 4X mode.

AX4T II-133

Memory

Provides four 168-pin <u>DRDRAM</u> DIMM socket that support up to 2GB of PC-600/800/1066 compliant DRDRAM (Direct Rambus DRAM). You may install 64, 128, 256 or 512MB with ECC (Error Checking and Correction) RDRAM RIMM modules into each socket.

Ultra DMA 33/66/100/133 Bus Mater IDE

Comes with an on-board PCI Bus Master IDE controller with four connectors that supports eight IDE devices, supports <u>Ultra DMA</u> 33/66/100/133, PIO Modes 3 and 4 and Bus Master IDE DMA Mode 4, and supports Enhanced IDE devices.

On-board AC97 Sound

AX4T II-133 uses AC97 sound chip. This on-board audio includes a complete audio recording and playback system.

Four USB Connectors

AX4T II-133 provides two ports, four <u>USB</u> connectors for USB interface devices such as mouse, keyboard, modem, scanner, etc.

Power Management/Plug and Play

AX4T II-133 supports the power management function that confirms to the power-saving standards of the U.S. Environmental Protection Agency (EPA) Energy Star program. It also offers Plug-and-Play, which helps save users from configuration problems, thus making system user-friendlier.

1MHz Stepping CPU Frequency Adjustment

Provides "1MHz Stepping CPU Frequency Adjustment" function in the BIOS. This magic function allows you to adjust CPU <u>FSB</u> frequency from 100~248MHz by 1MHz stepping adjustment, and helps your system get maximum performance.

Hardware Monitoring Management

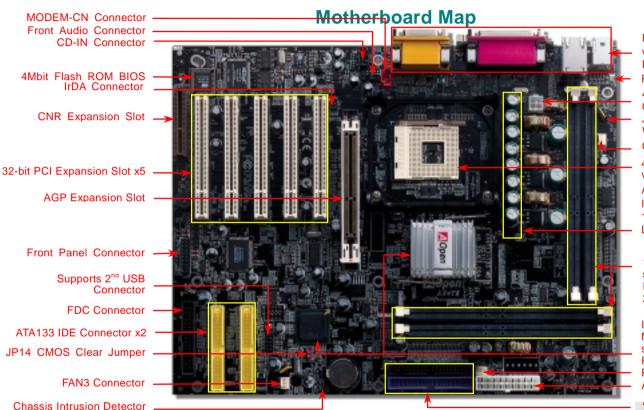
Supports CPU or system fans status, temperature and voltage monitoring and alert, through the on-board hardware monitor module.

Enhanced ACPI

Fully implement the <u>ACPI</u> standard for Windows[®] 98/ME/2000 series compatibility, and supports Soft-Off, STR (Suspend to RAM, S3), STD (Suspend to Disk, S4), WOM (Wake On Modem), WOL (Wake On LAN) features.

Super Multi-I/O

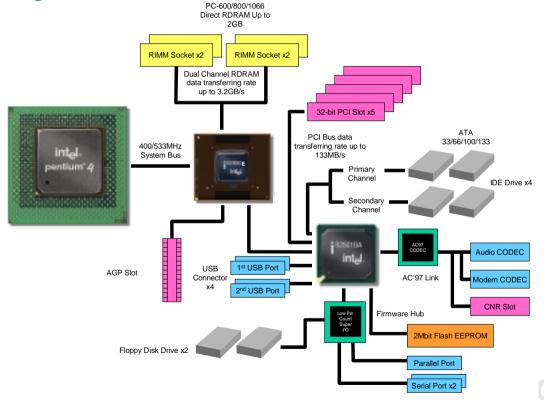
AX4T II-133 provides two high-speed UART compatible serial ports and one parallel port with EPP and ECP capabilities. UART2 can also be directed from COM2 to the Infrared Module for the wireless connections.


Quick Installation Procedure

This page gives you a quick procedure on how to install your system. Follow each step accordingly.

- 1. Installing CPU and Fan
- 2. <u>Installing System Memory (DIMM</u>
- 3. Connecting Front Panel Cable
- 4. Connecting IDE and Floppy Cable
- 5. Connecting ATX Power Cable
- 6. Connecting Back Panel Cable
- 7. Power-on and Load BIOS Setup Default
- 8. Setting CPU Frequency
- 9. Reboot
- 10. Installing Operating System (such as Windows 98)
- 11. Installing Driver and Utility

AX4T II-133 Online Manual



PC99 Colored Back Panel with 10/100Mbps Ethernet RJ45 Connector Resettale Fuse 4-pin 12V ATX Power Connector JP28 Keyboard/Mouse Wakeup CPU Fan Connector 478-pin CPU socket with Voltage and Frequency Auto-detection that supports Intel® Pentium® 4 1.4~2.4GHz CPU Low ESR Capacitors

184-pin RIMM Socket x4 supports PC-600/800/1066 RDRAM maximum up to 2GB

Intel® 850E chipset with MCH, ICH2 and FWH that supports LAN, Ultra ATA/100, RDRAM Solution FAN2 Connector ATX Power Connector ATA33/66/100 IDE Connector x2

Block Diagram

Hardware Installation

This chapter describes jumpers, connectors and hardware devices of this motherboard.

Note: Electrostatic discharge (ESD) can damage your processor, disk drives, expansion boards, and other components. Always observe the following precautions before you install a system component.

- 1. Do not remove a component from its protective packaging until you are ready to install it.
- 2. Wear a wrist ground strap and attach it to a metal part of the system unit before handling a component. If a wrist strap is not available, maintain contact with the system unit throughout any procedure requiring ESD protection.

About "User Upgrade Optional" and "Manufacture Upgrade Optional"...

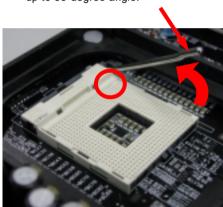
When you read this online manual and start to assemble your computer system, you may notice that some of the functions are marked as "User Upgrade Optional" or "Manufacture Upgrade Optional". Although all of AOpen's motherboards have included many amazing and powerful features, sometimes not every user is familiar with these powerful features. As a result of this we define features that can be upgraded by users as "User Upgrade Optional". You can upgrade these functions by purchasing additional devices. As for functions that cannot be upgraded by users, we define them as "Manufacture Upgrade Optional". If need be, you can contact our local distributors or resellers to purchase "Manufacture Upgrade Optional" components, and again you are also welcome to visit our official website at www.aopen.com for detail information.

JP14 Clear CMOS Data

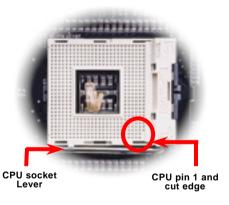
You can clear CMOS to restore system default setting. To clear the CMOS, follow the procedure below.

- 1. Turn off the system and unplug the AC power.
- 2. Remove ATX power cable from connector PWR2.
- 3. Locate JP14 and short pins 2-3 for a few seconds.
- 4. Return JP14 to its normal setting by shorting pin1 & pin2.
- **5.** Connect ATX power cable back to connector PWR2.

Clear CMOS Normal Operation (Default)


Tip: When should I Clear CMOS?

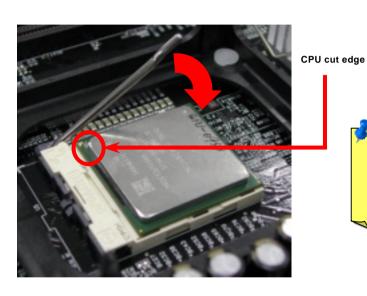
- 1. Boot fail because of overclocking...
- 2. Forget password...
- 3. Troubleshooting...


CPU Installation

This motherboard supports Intel® Pentium® 4 1.4~2.4GHz Socket 478 series CPU. Please follow steps below to finish CPU installation. Be careful of CPU orientation when you plug it into CPU socket.

1. Pull up the CPU socket level and up to 90-degree angle.

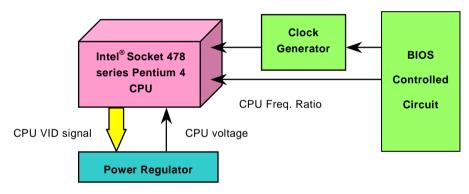
Locate Pin 1 in the socket and look for a black dot or cut edge on the CPU upper interface. Match Pin 1 and cut edge, then insert the CPU into the socket.



Note: These pictures are for example only; they may not look exactly the same as the motherboard you purchased.

3. Press down the CPU socket level and finish CPU installation.

Note: If you do not match the CPU socket Pin 1 and CPU cut edge well, it may damage the CPU.


Note: This socket supports Micro-FC-PGA2 package CPU, which is the latest CPU package developed by Intel. Other forms of CPU package cannot be fitted in.

Note: P4 CPU tends to produce higher temperature; for better heat dissipation, we recommend you to install this motherboard with a bigger housing. Besides, by doing so you can prevent components from colliding.

Note: The CPU you purchased may look different from the one shown here.

CPU Jumper-less Design

CPU VID signal and <u>SMbus</u> clock generator provide CPU voltage auto-detection and allows the user to set the CPU frequency through the <u>BIOS setup</u>, therefore no jumpers or switches are used. The disadvantages of the Pentium based jumper-less designs are eliminated. There will be no worry of wrong CPU voltage detection.

(Automatically generates CPU voltage)

Setting CPU Frequency

This motherboard is CPU jumper-less design, you can set CPU frequency through the BIOS setup, and no jumpers or switches are needed.

BIOS Setup > Frequency/Voltage Control > CPU Clock Ratio

CPU Ratio	8x, 9x, 10x, 11x,, 22x, 23x, 24x	
CPU FSB 100-248MHz by 1MHz stepping		

Warning: Intel® 850E chipset supports maximum 400MHz (100MHz*4) /533MHz (133MHz*4) system bus and 66MHz AGP clock, higher clock setting may cause serious system damage.

Tip: If your system hangs or fails to boot because of overclocking, simply use <Home> key to restore the default setting.

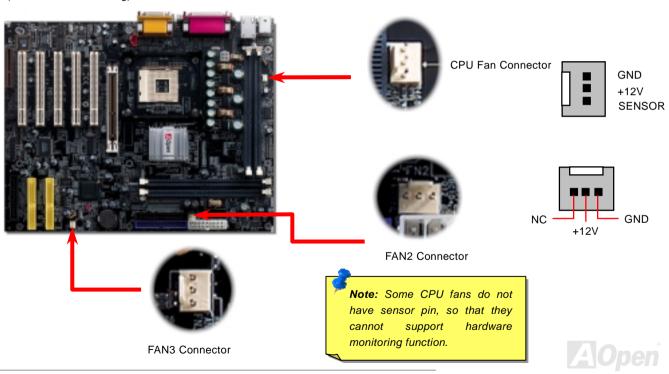
Supported CPU Frequency

Core Frequency = CPU Bus Clock * 4 * CPU Ratio

PCI Clock = CPU Bus Clock / Clock Ratio

AGP Clock = PCI Clock x 2

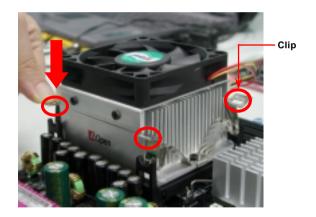
Northwood CPU	CPU Core Frequency	FSB Clock	System Bus	Ratio
Pentium 4 1.6G	1600MHz	100MHz	400MHz	16x
Pentium 4 1.6G	1600MHz	133MHz	533MHz	12x
Pentium 4 1.7G	1700MHz	133MHz	533MHz	13x
Pentium 4 1.8G	1800MHz	100MHz	400MHz	18x
Pentium 4 2.0G	2000MHz	100MHz	400MHz	20x
Pentium 4 2.2G	2200MHz	100MHz	400MHz	22x
Pentium 4 2.4G	2400MHz	100MHz	400MHz	24x
Pentium 4 2.4G	2400MHz	133MHz	533MHz	18x


Willamette CPU	CPU Core Frequency	FSB Clock	System Bus	Ratio
Pentium 4 1.5G	1500MHz	100MHz	400MHz	15x
Pentium 4 1.6G	1600MHz	100MHz	400MHz	16x
Pentium 4 1.7G	1700MHz	100MHz	400MHz	17x
Pentium 4 1.8G	1800MHz	100MHz	400MHz	18x
Pentium 4 1.9G	1900MHz	100MHz	400MHz	19x
Pentium 4 2.0G	2000MHz	100MHz	400MHz	20x

Warning: Intel[®] 850E chipset supports maximum 400MHz (100MHz*4) / 533MHz (133MHz*4) system bus and 66MHz AGP clock, higher clock setting may cause serious system damage.

Note: Since the latest processor, Northwood, would detect the clock ratio automatically, you may not be able to adjust the clock ratio in BIOS manually.

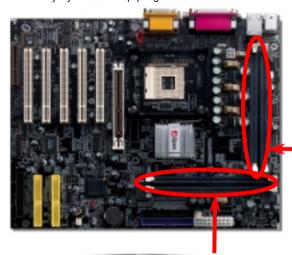
CPU and Housing Fan Connector (with H/W Monitoring)


Plug in the CPU fan cable to the 3-pin CPU FAN connector. If you have chassis fan, you can also plug it on FAN2 or FAN3 (without H/W monitoring) connector.

How to Install CPU Heatsink and Fan

This motherboard comes with a retention module attached on the CPU socket when shipped, we strongly recommend you to install AOpen special designed CPU Fan as shown below on the retention module for better heat dissipation. Please install the CPU Fan correctly as the following pictures shown.

- Gently put the CPU Fan down on the retention module with clips aligning correctly to the four corners.
- 2. Pressing down the four clips with force one by one on the retention module.



Note: The picture above may look different from the product you purchased.

RIMM Sockets

This motherboard has four 184-pin <u>RIMM</u> sockets that allow you to install PC600, PC800 and PC1066 <u>RDRAM</u> up to 2GB. AX4T II-133 will detect the RDRAM speed automatically while system is in <u>POST</u>, but it still allows you to select the RDRAM type manually by BIOS setup program.

Note: Based on Intel 850E chipset specification, AX4T II-133 has dual memory channel. Please note that when you insert RIMM modules, you have to insert them into RIMM 1 and 4, and have terminators inserted into RIMM 2 and 3. Or you can insert RIMM modules into RIMM 2 and 3 and have terminators inserted into RIMM 1 and 4

RIMM3 RIMM4 Pictures below are Direct RDRAM memory module and RIMM terminator (also called C-RIMM). Please do not forget to insert the RIMM terminator into the proper RIMM socket, otherwise the system cannot be booted.

DRDRAM RIMM Module

RIMM Terminator

How to Install Memory Modules

Please follow the procedure as shown below to finish memory installation.

1. Make sure the RIMM module's pin face down and match the socket's size as depicted below.

60 pins

88 pins

Insert the module straight down to the RIMM slot with both hands and press down firmly until the RIMM module is securely in place.

Note: The tabs of the RIMM slot will close-up to hold the RIMM in place when the RIMM touches the slot's bottom.

3. Repeat step 2 to finish additional RIMM & C-RIMM modules installation.

Note: Pictures shown here are for reference only.

Note: Please do not forget to install the C-RIMM modules into the proper RIMM slots.

Front Panel Connector

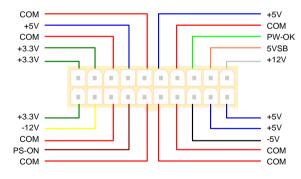
Attach the power LED, EMPI, speaker, power and reset switch connectors to the corresponding pins. If you enable "Suspend Mode" item in BIOS Setup, the ACPI & Power LED will keep flashing while the system is in suspend mode.

Locate the power switch cable from your ATX housing. It is 2-pin female connector from the housing front panel. Plug this connector to the soft-power switch connector marked **SPWR**.

Suspend Type	ACPI LED
Power on Suspend (S1) or Suspend to RAM (S3)	Keep flashing
Suspend to Disk (S4)	The LED will be turned off

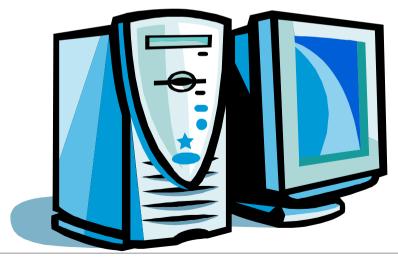
	Power Switch
	OO ACPI&
IDE LED +	
	00 +
Speaker	Reset

	1		
NC	0	0	SPWR
NC	0	0	GND
+5V	0	0	ACPI & PWR LED
IDE LED	0	0	GND
IDE LED	0	0	+5V
+5V	0	0	NC
+5V	0	0	NC
GND	0	0	GND
NC	0	0	RESET
SPEAKER	0	0	GND



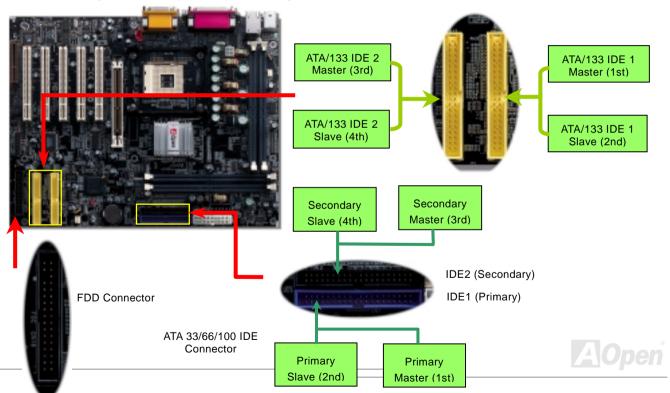
ATX Power Connector

This motherboard comes with a 20-pin and 4-pin ATX power connector as shown below. Make sure you plug in the right direction. We strongly recommend you to connect the 4-pin 12V ATX connector before connecting the 20-pin ATX power connector and use standard power supply specially designed for Pentium 4 system.



Power Connector

AC Power Auto Recovery


A traditional ATX system remains at power off stage when AC power resumes from power failure. This design is inconvenient for a network server or workstation without an UPS. This motherboard implements an AC Power Auto Recovery function to solve this problem.

IDE and Floppy Connector

Connect 34-pin floppy cable and 40-pin, 80-wire IDE cable to floppy connector FDD and IDE connector. Be careful of the pin1 orientation. Wrong orientation may cause system damage.

IDE1 is also known as the primary channel and IDE2 as the secondary channel. Each channel supports two IDE devices that make a total of four devices. In order to work together, the two devices on each channel must be set differently to Master and Slave mode. Either one can be the hard disk or the CDROM. The setting as master or slave mode depends on the jumper on your IDE device, so please refer to your hard disk and CDROM manual accordingly.

Warning: The specification of the IDE cable is a maximum of 46cm (18 inches); make sure your cable does not exceed this length.

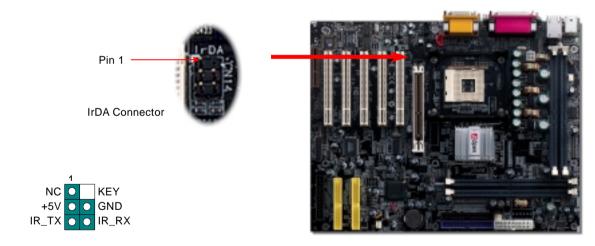
Tip:

- For better signal quality, it is recommended to set the far end side device to master mode and follow the suggested sequence to install your new device. Please refer to above diagram
- To achieve the best performance of Ultra DMA 66/100 hard disks, a special 80-wires IDE cable for Ultra DMA 66/100 is required.

ATA/133 Supported

This motherboard supports ATA66, ATA100 or ATA133 IDE devices. Following table lists the transfer rate of IDE PIO and DMA modes. The IDE bus is 16-bit, which means every transfer is two bytes. As the hard drive industry introduces faster and higher capacity hard drives, the current Ultra ATA/100 interface causes a data bottleneck between the drive and the host computer. To avoid this problem, hard disk manufactures have introduced the new Ultra ATA-133 interface technology. Compared to traditional ATA/100, ATA/133 has up to 33 percent increase in interface speed with transfer rate of 133MB/s. ATA/133 performance is ideal for new operating systems, such as Window XP, that demand more storage space and faster data transfer rates from more responsive computing experiences.

To make good use of this new technology and enjoy its best performance, we recommend you to pair your system with a hard disk equipped with ATA/133 technology so that your system's need for speed on this motherboard can be satisfied.


Mode	Clock Period	Clock Count	Cycle Time	Data Transfer Rate
PIO mode 0	30ns	20	600ns	(1/600ns) x 2byte = 3.3MB/s
PIO mode 1	30ns	13	383ns	$(1/383ns) \times 2byte = 5.2MB/s$
PIO mode 2	30ns	8	240ns	(1/240ns) x 2byte = 8.3MB/s
PIO mode 3	30ns	6	180ns	(1/180ns) x 2byte = 11.1MB/s
PIO mode 4	30ns	4	120ns	$(1/120ns) \times 2byte = 16.6MB/s$
DMA mode 0	30ns	16	480ns	(1/480ns) x 2byte = 4.16MB/s
DMA mode 1	30ns	5	150ns	(1/150ns) x 2byte = 13.3MB/s
DMA mode 2	30ns	4	120ns	(1/120ns) x 2byte = 16.6MB/s
ATA 33	30ns	4	120ns	(1/120ns) x 2byte x2 = 33MB/s
ATA 66	30ns	2	60ns	$(1/60ns) \times 2byte \times 2 = 66MB/s$
ATA100	20ns	2	40ns	(1/40ns) x 2byte x2 = 100MB/s
ATA 133	15ns	2	30ns	(1/30ns) x 2byte x2= 133MB/s

IrDA Connector

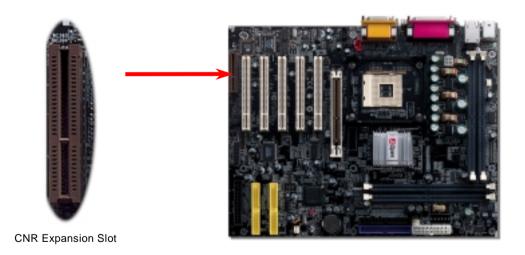
The IrDA connector can be configured to support wireless infrared module, with this module and application software such as Laplink or Windows 95 Direct Cable Connection, the user can transfer files to or from laptops, notebooks, PDA devices and printers. This connector supports HPSIR (115.2Kbps, 2 meters) and ASK-IR (56Kbps).

Install the infrared module onto the IrDA connector and enable the infrared function from BIOS Setup, UART2 Mode, make sure to have the correct orientation when you plug in the IrDA connector.

AGP (Accelerated Graphic Port) Expansion Slot

AX4T II-133 provides an <u>AGP</u> 4x slot. AGP 1x2x4x is a bus interface targeted for high-performance 3D graphic. AGP supports memory read/write operation and single-master single-slave one-to-one only. It uses both rising and falling edge of the 66MHz clock, for 2X AGP, the data transfer rate is 66MHz x 4bytes x 2 = 528MB/s. AGP is now moving to AGP 4x mode, 66MHz x 4bytes x 4 = 1056MB/s. And this AGP expansion slot supports 1.5V AGP card only.

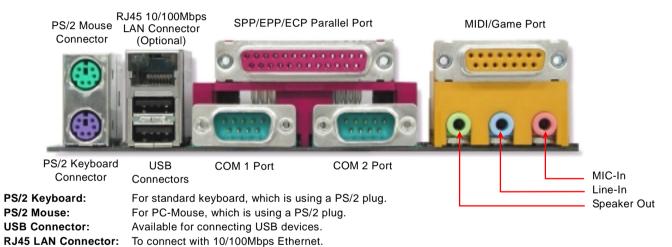
AGP Protection Technology


With the outstanding R&D ability of AOpen and its specially developed circuit, AX4T II-133 implements a blend new technology to protect your motherboard from being damaged by over-voltaging of AGP card. When AGP Protection Technology is implemented, this motherboard will automatically detect the voltage of AGP card and prevent your chipsets from being burnt out.

CNR (Communication and Network Riser) Expansion Slot

<u>CNR</u> is a riser card specification to replace the <u>AMR (Audio/Modem Riser)</u> that supports V.90 analog modem, multi-channel audio, and phone-line based networking. Owing to CPU computing power getting stronger, the digital processing job can be implemented in main chipset and share CPU power. The analogy conversion (<u>CODEC</u>) circuit requires a different and separate circuit design, which is put on CNR card. This motherboard implements sound CODEC on board (can be disabled by BIOS setup program), but reserve CNR slot for the option of modem function. Note that you can still use PCI modem card.

Support Intel® PRO/100 Network Connection


This motherboard has a fast Ethernet controller on chip. On the strength of LAN chip onboard, it provides 10/100M bps Ethernet for office and home use, the Ethernet connector is located on top of USB connectors.

PC99 Color Coded Back Panel

The onboard I/O devices are PS/2 Keyboard, PS/2 Mouse, COM1 and COM2, Printer, RJ45 LAN (optional), <u>four USBs</u>, AC97 sound and game ports. The view angle of drawing shown here is from the back panel of the housing.

Parallel Port: To connect with SPP/ECP/EPP printer.

COM 1/COM 2 Port: To connect with pointing devices, modem or others serial devices.

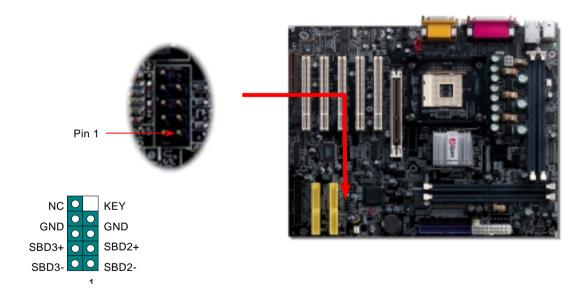
Speaker Out: To External Speaker, Earphone or Amplifier.

Line-In: Comes from the signal sources, such as CD/Tape player.

MIC-In: From Microphone.

MIDI/Game Port: For 15-pin PC joystick, game pad or MIDI devices.

JP28 Keyboard/Mouse Wakeup Select Jumper


This motherboard provides keyboard / mouse wake-up function. You can use JP28 to enable or disable this function, which could resume your system from suspend mode with keyboard or mouse. The factory default setting is "Enable" (1-2), and you may disable this function by setting the jumper to 2-3.

Support 2nd USB Port

This motherboard provides 4 <u>USB</u> connectors to connect USB devices, such as mouse, keyboard, modem, printer, etc. There are two connectors on the PC99 back panel. You can use proper cable to connect others USB connectors to the back plane or front panel of chassis.

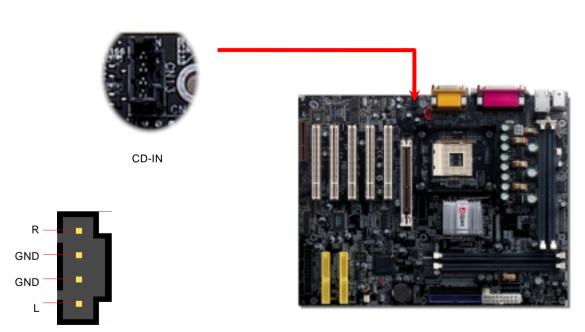
Chassis Intrusion Sensor

The "CASE OPEN" header provides chassis intrusion-monitoring function. This function will log an event in the system BIOS when this header is connected. You can use the 2-pin chassis intrusion sensor to connect with this header, and enable the chassis monitoring function of system BIOS.

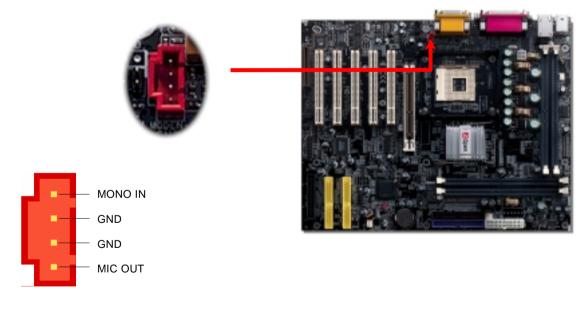
Intrusion Sensor

GND Sensor

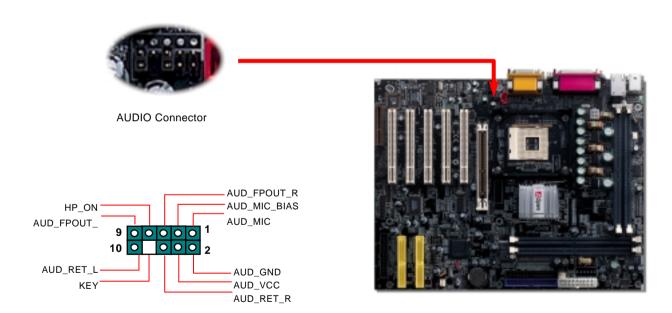
00.



CD Audio Connector

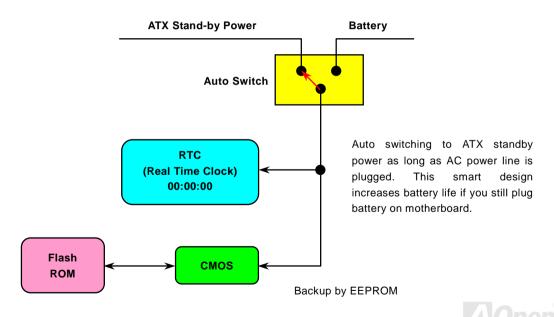

This connector is used to connect CD Audio cable from CDROM or DVD drive to onboard sound.

Modem Audio Connector

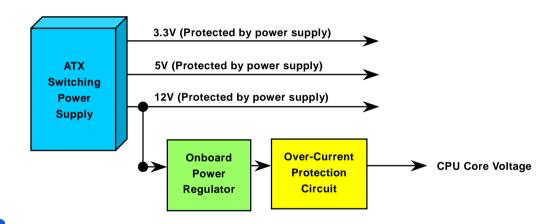

This connector is used to connect Mono In/MIC Out cable from internal modem card to onboard sound circuit. The pin 1-2 is Mono In, and the pin 3-4 is MIC Out. Please note that there is no standard for this kind of connector yet, only some internal modem cards implement this connector.

Front Audio Connector

If the housing has been design with an audio port on the front panel, you'll be able to connect onboard audio to front panel through this connector.



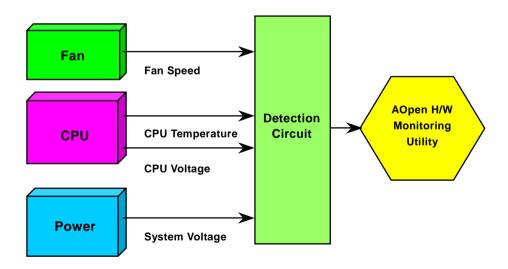
Battery-less and Long Life Design


This Motherboard implements Flash ROM and a special circuit that allows you to save your current CPU and CMOS Setup configurations without the need of a battery. The RTC (real time clock) can also keep running as long as the power cord is plugged. If you lose your CMOS data by accident, you can just reload the CMOS configurations from Flash ROM and the system will recover as usual.

49

Over-current Protection

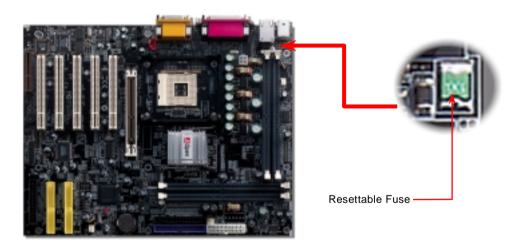
The Over Current Protection was very popular implemented on ATX 3.3V/5V/12V switching power supply. However, the new generation CPU uses different voltage that has regulator to transfer 12V to CPU voltage (for example, 2.0V), and makes 5V over current protection useless. This motherboard is with switching regulator onboard supports CPU over-current protection; in conjunction with 3.3V/5V/12V power supply provide the full line over-current protection.



Note: Although we have implemented protection circuit try to prevent any human operating mistake, there is still certain risk that CPU, memory, HDD, add-on cards installed on this motherboard may be damaged because of component failure, human operating error or unknown nature reason. **AOpen cannot guaranty the protection circuit will always work perfectly.**

Hardware Monitoring

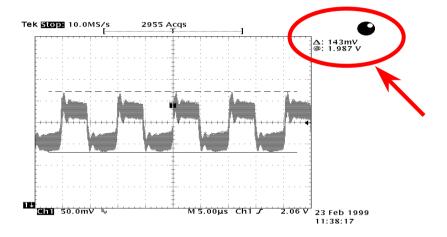
This motherboard implements a hardware monitoring system. As you turn on your system, this smart design will continue to monitor your system's working voltage, fan status and CPU temperature. If any of these systems' status goes wrong, there will be an alarm through the chassis external speaker or buzzer of motherboard (if existed) to warn the user.



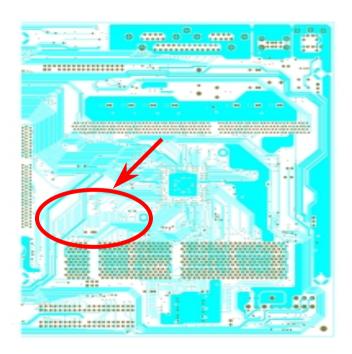
Resettable Fuse

Traditional motherboard has fuse for Keyboard and <u>USB</u> port to prevent over-current or shortage. These fuses are soldered onboard that when it is broken (did the job to protect motherboard), user still cannot replace it and the motherboard is still malfunction.

With expensive Resettable Fuse, the motherboard can back to normal function after fuse did the protection job.


Low ESR Capacitor

A group of large capacitors that meet the requirements of today's high performance motherboard design. The theory behind this is long transmission lines have considerable inductance and capacitance as well as resistance. When a current flows through the line, inductance and capacitance have the effect of varying the voltage on the line as the current varies. Thus the supply voltage varies with the load. Several kinds of devices are used to overcome this undesirable variation, in an operation called regulation of the voltage. They include induction regulators and three-phase synchronous motors (called synchronous condensers), both of which vary the effective amount of inductance and capacitance in the transmission circuit. Inductance and capacitance react with a tendency to nullify one another. When a load circuit has more inductive than capacitive reactance, as almost invariably occurs in large power systems, the amount of power delivered for a given voltage and current is less than when the two are equal. The ratio of these two amounts of power is called the power factor. Because transmission-line losses are proportional to current, capacitance is added to the circuit when possible, thus bringing the power factor as nearly as possible to 1. For this reason, large capacitors are frequently inserted as a part of power-transmission systems.


The power circuit of the CPU core voltage must be checked to ensure system stability for high speed CPUs (such as the new Pentium III, or when overclocking). A typical CPU core voltage is 2.0V, so a good design should control voltage between 1.860V and 2.140V. That is, the transient must be below 280mV. Below is a timing diagram captured by a Digital Storage Scope, it shows the voltage transient is only 143mv even when maximum 18A current is applied.

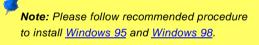
Note: This diagram is for example only; it may not be exactly the same as this motherboard.

Layout (Frequency Isolation Wall)

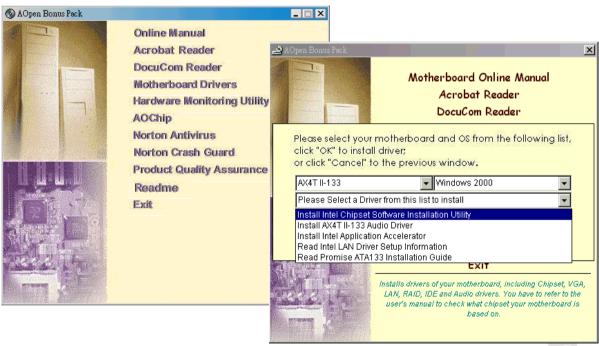
For high frequency operation, especially overclocking, layout is the most important factor to make sure chipset and CPU working in stable condition. The layout of this motherboard implements AOpen's unique design called "Frequency Isolation Wall". Separating each critical portion of motherboard into regions where each region operates in a same or similar frequency range to avoid cross talk and frequency interference between each region's operations and condition. The trace length and route must be calculated carefully. For example, the clock trace must be equal length (not necessarily as short as possible) so that clock skew will be controlled within few a pico second (1/10¹² Sec)

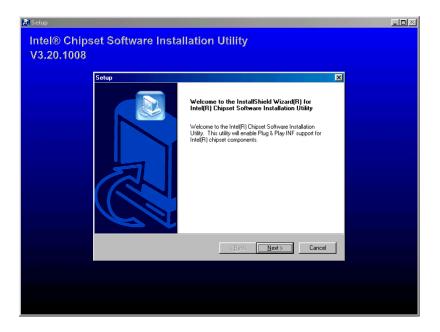
Note: This diagram for example only, it may not look exactly the same with the motherboard you purchased.

Pure Aluminum Heatsink


Cool down CPU and Chipset is important for system reliability. Aluminum heat sink provides better heat consumption especially when you are trying to overclock.

Driver and Utility


There are motherboard drivers and utilities included in <u>AOpen Bonus CD</u>. You don't need to install all of them in order to boot your system. But after you finish the hardware installation, you have to install your operation system first before you can install any drivers or utilities. Please refer to your operation system's installation guide.


Auto-run Menu from Bonus CD Disc

You can use the auto-run menu of Bonus CD disc. Choose the utility and driver and select model name.

Eliminate "?" mark from Windows 95/98

Windows 95/98 cannot recognize this chipset, because it was released before the Intel 850E chipset. You can install the Intel INF Update Utility from the Bonus Pack CD disc auto-run menu to eliminate the "?" marks.

Installing Intel IAA Driver

You can install Intel IAA Driver to increase the performance of software applications and reduce PC boot times. You can find it in the AOpen Bonus Pack CD.

Installing Onboard LAN Driver

This motherboard comes with an Intel® 10/100Mbps LAN controller. You can find the LAN driver from the Bonus Pack CD.

Installing Onboard Audio Driver

This motherboard comes with a RealTek ALC201A chip. You can find the audio driver from the Bonus Pack CD auto-run menu.

Install ATA/133 Driver

Installing Drivers During New Windows 95 Installation

1. After enabling the Ultra133 controller and configuring the hard drives, partition and format your hard drive(s), if necessary.

- 2. Install Windows 95 normally.
- 3. After installation, go to the "Start" menu and choose "Settings."
- 4. From the "Settings" menu, choose "Control Panel."
- 5. In the "Control Panel" window, double-click on the "System" icon.
- 6. In the "System" window, choose the "Device Manager" tab.
- 7. In the hierarchical display under "Other Devices" is a listing for "PCI Mass Storage Controller." Choose it and then press the "Properties" button.
- 8. Choose the "Driver" tab in the "Properties" window, and then press the "Update Driver" button.
- 9. When asked if you want Windows to search for the driver, choose "Yes (recommended)."
- 10. Insert the Bonus CD into the CD-ROM, then press "Next."
- 11. When Windows informs you that it was unable to find the drivers, press "Other Locations..."
- 12. In the "Select Other Location" dialog box, type "[CD-ROM]:\Driver\Promise\20275\WIN9X-ME".
- 13. Press "OK." Windows should inform you that it has found "Win9x-ME Promise Ultra133 TX2(tm) IDE Controller".
- 14. Click on "Finish," and when prompted to insert the "Ultra133 Driver" diskette, go to the "Copy files from:" text box and type: "[CD-ROM]:\Driver\Promise\20275\WIN9X-ME". click "OK."
- 15. Choose "Yes" when asked if you wish to restart the system.

Installing Drivers During Windows 98 Installation

The following details the installation of the Ultra133 drivers while installing Windows 98 (with the Ultra133 controller is enabled already).

- After enabling the Ultra133 controller and configuring the hard drive(s), partition and format your hard drive(s), if necessary.
- 2. Install Windows 98 normally.
- 3. After installation, go the "Start" menu and choose "Settings."
- 4. From the "Settings" menu, choose "Control Panel."
- 5. In the "Control Panel" window, double-click on the "System" icon.
- 6. In the "System" window, choose the "Device Manager" tab.
- 7. In the hierarchical display under "Other Devices" is a listing for "PCI Mass Storage Controller." Choose it and then press the "Properties" button.
- 8. Choose the "Driver" tab in the "Properties" window, choose "Update Driver," and then press "Next."
- 9. Choose "Search for a better driver than the one your device is using now (recommended)," then press "Next."
- 10. Insert the "Bonus CD" in CD-ROM.
- 11. Choose "Specify a Location," and then type "[CD-ROM]:\Driver\Promise\20275\WIN9X-ME" in the text box.
- 12. Press the "Next" button. A message informing you that Windows has found "Win9x-ME Promise Ultra133 TX2(tm) IDE Controller" should appear.
- 13. Press "Next," then "Finish," then "Yes" when asked if you want to restart your computer.

Installing Driver During New Windows 2000 Installation

- Start the installation:
 - a. Floppy Install: Boot the computer with the Windows 2000 installation diskettes.
 - b. Floppyless Install: Boot from floppy and type "WINNT". After files have been copied, the system will reboot. On the reboot, press <F6> after the message "Setup is inspecting your computer's hardware configuration..." appears.
 - c. CD-ROM Install: Boot from the CD-ROM. Press <F6> after the message "Press F6 if you need to install third party SCSI or RAID driver" appears.
- 2. When the "Windows 2000 Setup" window is generated, press "S" to Specify an Additional Device(s)
- 3. Copy all directories and files in "[CD-ROM]:\Driver\Promise\20275" to floppy disk.
- 4. Insert the Promise Technology driver diskette into drive A: and press "Enter" key.
- 5. Use " ↑ " or " ↓ " to choose "Win2000 Promise Ultra133 TX2(tm) Controller" from the list that appears on screen, and then press the "Enter" key.
- The Windows 2000 Setup screen will appear again saying "Setup will load support for the following mass storage devices:"
 The list will include "Win2000 Promise Ultra133 TX2(tm) IDE Controller".

NOTE: If you need to specify any additional devices to be installed, do so at this time. Once all devices are specified, continue to the next step -

7. From the Windows 2000 Setup screen, press the Enter key. Setup will now load all device files and then continue the Windows 2000 installation.

Installing Private Puring Windows Mo Installat

Installing Drivers During Windows Me Installation

The following details the installation of the Ultra133 drivers while installing Windows Me (with the Ultra133 controller is enabled already).

- 1. Install Windows Me fully.
- 2. After installation, go the "Start" menu and choose "Settings."
- 3. From the "Settings" menu, choose "Control Panel."
- 4. In the "Control Panel" window, double-click on the "System" icon.
- 5. In the "System" window, choose the "Device Manager" tab.
- 6. In the hierarchical display under "Other Devices" is a listing for "PCI Mass Storage Controller." Choose it and then press the "Properties" button.
- 7. Choose the "Driver" tab in the "Properties" window, choose "Update Driver," and then press "Next."
- 8. Choose "Specify the location of the driver (Advanced)," then press "Next".
- 9. Insert the Bonus CD in CD-ROM.
- 10. Choose "Specify a Location," and then type "[CD-ROM]:\Driver\Promise\20275\WIN9X-ME" in the text box.
- 11. Press the "Next" button. A message informing you that Windows Me has found "Win9x-ME Promise Ultra133 TX2(tm) IDE Controller" should appear.
- 12. Press "Next," then "Finish," then "Yes" when asked if you want to restart your computer.

Installing Drivers During New Windows NT 4.0 Installation

- 1. Start the system installation by booting from the Windows NT disk:
 - a. Floppy install: boot the system with the Windows NT installation diskettes.
 - b. Floppyless install: boot from floppy and type "WINNT /B". After files have been copied, the system will reboot. On the reboot, press the "F6" key when the message "Setup is inspecting your computer's hardware configuration..." appears.
 - c. CD-ROM disk install: boot from the CD-ROM disk and press "F6" key when the message "Setup is inspecting your computer's hardware configuration..." appears.
- 2. When the "Windows NT Setup" window is generated, press "S" to specify an Additional Device(s).
- 3. Use " \uparrow " or " \downarrow " to select "Other" and press the "Enter" key.
- 4. Copy all files in "[CD-ROM]:\Driver\Promise\20275" to floppy disk.
- 5. Insert the driver diskette into drive A: and press the "Enter" key.
- 6. Choose "WinNT Promise Ultra133 TX2(tm) Controller" from the list that appears on screen, and then press the "Enter" key.
- 7. The Windows NT Setup screen will appear again saying, "Setup will load support for the following mass storage devices:" The list will include "WinNT Promise Ultra133(tm) IDE Controller".

NOTE: If you need to specify any additional devices to be installed, do so at this time. Once all devices are specified, continue to the next step -

- 8. From the Windows NT Setup screen, press the Enter key. Setup will now load all device files and then continue the Windows NT installation.
- After a successful installation, the "SCSI Adapter Setup" box will show that the "WinNT Promise Ultra133 TX2(tm) IDE Controller" driver has been installed.

Installing Driver During New Windows XP Installation

1. Start the installation:

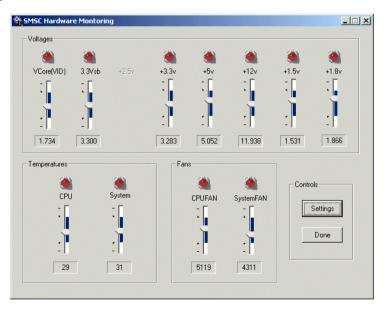
- a. Floppy Install: Boot the computer with the Windows XP installation diskettes.
- b. Floppyless Install: Boot from floppy and type "WINNT". After files have been copied, the system will reboot. On the reboot, press <F6> after the message "Setup is inspecting your computer's hardware configuration..." appears.
- c. CD-ROM Install: Boot from the CD-ROM. Press <F6> after the message "Press F6 if you need to install third party SCSI or RAID driver" appears.
- 2. When the "Windows XP Setup" window is generated, press "S" to Specify an Additional Device(s)
- 3. Copy all directories and files in "[CD-ROM]:\Driver\Promise\20275" to floppy disk.
- 4. Insert the Promise Technology driver diskette into drive A: and press "Enter" key.
- 5. Use "↑" or "↓" to choose "WinXP Promise Ultra133 TX2 (tm) Controller" from the list that appears on screen, and then press the "Enter" key.

NOTE: Immediately following the loading of the selected driver the Installation Program will notify you of following: "The driver you provided seems to be newel than the Windows default driver. Windows already has a driver that you can use for "WinXP Promise Ultra133 TX2 (tm) IDE Controller". Unless the device manufacture prefers that you use the driver on the floppy disk, you should use the driver in Windows."

6. Press "S" to use the driver on the floppy disk, and then press "enter" to continue with installation. If you press "enter" to use "Windows default driver", you will encounter the following error message in the next phase of the installation: "Setup did not find any hard disk drives installed in your computer"

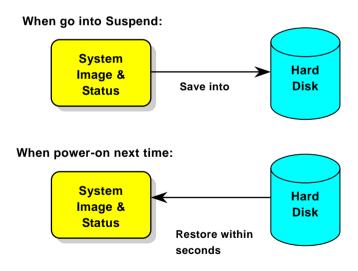
NOTE: Restart installation and then use option "S" to load driver from floppy disk.

7. The Windows XP Setup screen will appear again saying, "Setup will load support for the following mass storage devices:" The list will include "WinXP Promise Ultra133 TX2 (tm) IDE Controller".


NOTE: If you need to specify any additional devices to be installed, do so at this time. Once all devices are specified, continue to the next step -

8. From the Windows XP Setup screen, press the Enter key. Setup will now load all device files and then continue the Windows XP installation.

Installing Hardware Monitoring Utility


You can install Hardware Monitoring Utility to monitor CPU temperature, fans and system voltage. The hardware monitoring function is automatically implemented by the BIOS and utility software. No hardware installation is needed. To install the software, double click "Setup.exe". The driver will be copied into Windows directory and an entry of "Hardware Monitor" in the start menu will be created.

ACPI Suspend to Hard Drive

ACPI Suspend to Hard Drive is basically controlled by Windows operation system. It saves your current work (system status, memory and screen image) into hard disk, and then the system can be totally power off. Next time, when power is on, you can resume your original work directly from hard disk within few seconds without go through the Windows booting process and run your application again. If your memory is 64MB, normally, you need to reserve at least 64MB HDD space to save your memory image.

System Requirement

- 1. AOZVHDD.EXE 1.30b or later.
- 2. Delete config.sys and autoexec.bat.

Fresh installation of Windows 98 on a new system

- 1. Execute "Setup.exe /p j" to install Windows 98
- 2. After Windows 98's installation is complete, go to the Control Panel > Power Management.
 - a. Set Power Schemes > System Standby to "Never".
 - b. Click on "Hibernate" and select "Enable Hibernate Support" then "Apply".
 - c. Click on the "Advanced" tab, you'll see "Hibernate" on "Power Buttons". Note that this option will only be seen after step b mentioned above has been completed; otherwise only "Standby" and "Shutdown" will be shown. Select "Hibernate" and "Apply".
- 3. Clean boot into DOS and run AOZVHDD utility.
 - a. If you assign the whole disk to your Win 98 system (FAT 16 or FAT 32), please run "aozvhdd /c /file". Please remember sufficient free space has to be reserved in the disk, e.g. if you have 64 MB DRAM and 16 MB VGA card installed, the system needs at least 80 MB free space. The utility will locate the space automatically.
 - b. If you assign an individual partition for Win 98, please run "aozvhdd /c /partition". Of course, the system needs to provide unformatted an empty partition.
- 4. Reboot system.
- 5. You've already implemented ACPI Suspend to-Hard Drive. Click "Start > Shut Down > Standby" then the screen will go off immediately. And 1 minute or so will be taken for the system to save what's in the memory to the hard drive; the larger the memory size the longer this process will take.

Changing from APM to ACPI (Windows 98 only)

- 1. Run "Regedit.exe"
 - a. Go through the following path

HKEY_LOCAL_MACHINE

SOFTWARE

MICROSOFT

WINDOWS

CURRENT VERSION

DETECT

- b. Select "ADD Binary" and name it as "ACPIOPTION".
- c. Right click and select Modify, add "01" after "0000" to make it "0000 01".
- d. Save changes.
- 2. Select "Add New Hardware" under Control Panel. Allow Windows 98 to detect new hardware. (It will find "ACPI BIOS" and remove "Plug and Play BIOS")
- 3. Reboot system.
- 4. Clean boot into DOS and run "AOZVHDD.EXE /C /File"

Changing from ACPI to APM

1. Run "Regedit.exe"

a. Go through the following path

HKEY_LOCAL_MACHINE

SOFTWARE

MICROSOFT

WINDOWS

CURRENT VERSION

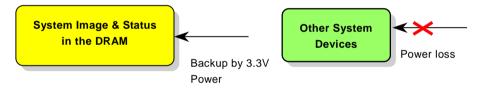
DETECT

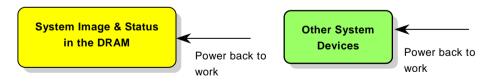
ACPI OPTION

b. Right click and select "Modify, change "01" to "02" to make it "0000 02".

Tip: "02" means Windows 98 is ACPI acknowledged but the ACPI function is disabled.

- c. Save changes.
- 2. Select "Add New Hardware" under Control Panel. Allow Windows 98 to detect new hardware. (It will find "Plug and Play BIOS" and remove "ACPI BIOS")
- 3. Reboot system.
- 4. Run "Add New Hardware" again and it will find "Advanced Power Management Resource".
- 5. Click "OK".


Tip: Currently we found only ATI 3D Rage Pro AGP card would support ACPI suspend to disk. Please refer to AOpen web site for latest update


ACPI Suspend to RAM (STR)

This motherboard supports <u>ACPI</u> Suspend to RAM function. With this function, you can resume your original work directly from DRAM without going through the Windows 98 booting process and run your application again. Suspend to DRAM saves your current work in the system memory, it is faster than Suspend to Hard Drive but requires power supplied to DRAM, while Suspend to Hard Drive requires no power.

When go into Suspend:

When power-on next time:

To implement ACPI Suspend to DRAM, please follow the procedures as below:

System Requirement

- 1. An ACPI OS is required. Currently, Windows 98 is the only choice.
- 2. The VIA 4 in 1 Driver must have been installed properly.

Procedures

- 1. Changed the following BIOS settings.
 - BIOS Setup > Power Management Setup > ACPI Function: Enabled
 - BIOS Setup > Power Management Setup > ACPI Suspend Type: S3.
- 2. Go to Control Panel > Power Management. Set "Power Buttons" to "Standby".
- 3. Press power button or standby button to wake up the system.

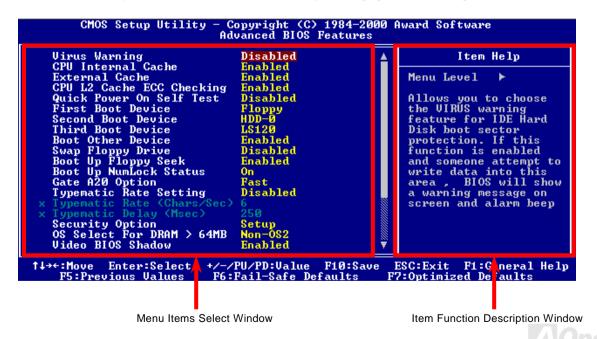
Phoenix-AWARD BIOS

System parameters can be modified by going into <u>BIOS</u> Setup menu, this menu allows you to configure the system parameters and save the configuration into the 128 bytes CMOS area, (normally in the RTC chip or in the main chipset).

The AwardBIOS[™] that installed in the <u>Flash ROM</u> of the motherboard is a custom version of an industry standard BIOS. The BIOS provides critical low-level support for standard devices such as hard disk drives, serial and parallel ports.

Most BIOS settings of AX4T II-133 have been optimized by AOpen's R&D engineering team. But the default setting of BIOS still can't fine-tune the chipset controlling entire system. Therefore this chapter aims to guide you through the process of configuring your system using setup.

Currently there are two kinds of beep sound when system fails booting at POST. The first type of beep sound consists of a single long beep and two short beeps, indicating a video error has failed BIOS from initializing video screen for displaying any additional information. The 2nd type of beep sound is a single long beep that beeps repeatedly, signaling a DRAM error has occurred. You may look over the indicated error according to different beep significances.


To enter to BIOS setup menu, press when POST (Power-On Self Test) screen is shown on your monitor.

Note: Because the BIOS code is the most often changed part of the motherboard design, the BIOS information contained in this manual may be different with actual BIOS that come with your motherboard.

About BIOS Function Description...

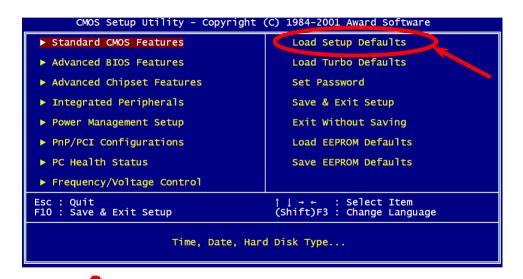
AOpen always dedicates to give users a more friendly computer system. Now, we include all function descriptions of BIOS setup program into the BIOS Flash ROM. When you select one function of BIOS setup program, the function description will appeared at right side of screen. Hence, you don't need read this manual while you changing the BIOS setting.

How To Use Award™ BIOS Setup Program

Generally, you can use the arrow keys to highlight items that you want to choose, then press <Enter> key to select, and use the <Page Up> and <Page Down> key to change setting value. You also can press <F1> key for help and press <Esc> key to quit AwardTM BIOS setup program. The following table provides details about how to use keyboard in the AwardTM BIOS setup program. By the way, all products of AOpen also provides a special function in the BIOS setup, you can press <F3> key selecting preferred menu language to display.

Key	Description		
Page Up or +	Changing setting to next value or increase the value.		
Page Down or -	Changing setting to previous value or decrease value.		
Enter	Select the item.		
Esc	In main menu: Quit and don't save any change.		
	2. In sub menu: Exit current menu to main menu.		
Up Arrow	Highlight previous item.		
Down Arrow	Highlight next item.		
Left Arrow	Move the light bar to left side of menu.		
Right Arrow	Move the light bar to right side of menu.		
F1	Get menu or item help description.		
F3	Changing menu language.		
F5	Load previous setting value from CMOS.		

Key	Description	
F6	Load fail-save setting value from CMOS.	
F7	Load turbo setting value from CMOS.	
F10	Save changed setting and exit setup program.	


Note: A Open always dedicates to give users a more friendly computer system. Now, we include all function descriptions of BIOS setup program into the BIOS Flash ROM. When you select one function of BIOS setup program, the function description will appeared at right side of screen. Hence, you don't need read this manual while you change the BIOS setting.

How To Enter BIOS Setup

After you finish the setting of jumpers and connect correct cables. Power on and enter the BIOS Setup, press during_POST (Power-On Self Test). Choose "Load Setup Defaults" for recommended optimal performance.

Warning: Please avoid of using "Load Turbo Defaults", unless you are sure your system components (CPU, DRAM, HDD, etc.) are good enough for turbo setting.

BIOS Upgrade under Windows environment

With outstanding R&D ability of AOpen, we now bring you a whole new BIOS Flash wizard ---- EZWinFlash. With an eye to users convenience, EZWinFlash combines the BIOS binary code and flash module together, so the only thing you have to do is just clicking on the utility you downloaded from web and let it helps you complete the flash process automatically. EZWinFlash detects your motherboard and checks the BIOS version cleverly to prevent your system from any possible failure. Moreover, EZWinFlash has been taken into consideration to go with any windows platform you might be using, no matter if you're using Windows 95/98, 98SE/ME, NT4.0/2000, or even the latest Windows XP.

In the meanwhile, in order to provide a much more user-friendly operating environment, AOpen EZWinFlash is natively designed to have multi-language function to provide easier way for users' usage in changing BIOS setting.

Flash ROM Information		CheckSum: F1A9H	
Flash Type	Intel E82882AB - /3.3V (4Mb)	Option	Start Flash
Current BIOS Information		☐ Clear PnP Area	
Model Name	AXISPles	☐ Clear DMI Area ☐ Clear CMOS Language	Save BIOS
BIOS Version	R1.09		
Release Date	Oct.09.2001		
New BIOS Information		© English	About
Model Name	AXSPles	← German ← Chinese-BIGS	_
BIOS Version	R1.09		
Release Date	Oct.09.2001		Edit
	Message		

Caution: By updating your motherboard, you are taking a risk of BIOS flash failure. If your motherboard is working stable, and there are no major bugs that had been fixed by a latter BIOS revision, we recommend that you DO NOT try to upgrade your BIOS.

If you intent on upgrading, PLEASE BE SURE to get the right BIOS revision for the right motherboard model to avoid any possibility failure.

Note: The model name on this BIOS picture is for reference only. It may not be the exact model name.

You may accomplish BIOS upgrade procedure with EZWinFlash by the following steps, and it's STRONGLY RECOMMMANDED to close all the applications before you start the upgrading.

- 1. Download the new version of BIOS package zip file from AOpen official web site. (ex: http://www.aopen.com)
- 2. Unzip the download BIOS package (ex: WAX4T2133102.ZIP) with WinZip (http://www.winzip.com) in Windows environment.
- 3. Save the unzipped files into a folder, for example, WAX4T2133102.EXE & WAX4T2133102.BIN.
- 4. Double click on the WAX4T2133102.EXE, EZWinFlash will detect the model name and BIOS version of your motherboard. If you had got the wrong BIOS, you will not be allowed to proceed with the flash steps.
- 5. You may select preferred language in the main menu, then click [Start Flash] to start the BIOS upgrade procedure.
- 6. EZWinFlash will complete all the process automatically, and a dialogue box will pop up to ask you to restart Windows. You may click [YES] to reboot Windows.
- 7. Press at POST to enter BIOS setup, choose "Load Setup Defaults", then "Save & Exit Setup". Done!

It is strongly recommended NOT to turn off the power or run any application during FLASH PROCESS.

Warning: The new BIOS upgrade will permanently replace your original BIOS's settings and PnP information when flashing. You may need to reconfigure your BIOS setting and re-install Win95/Win98 as well as your add-on cards, so that your system can go back to work as normal.

Overclocking

As a leading manufacturer in motherboard industry, AOpen always listens to what customers want and develop products to fit different user's requirements. Reliability, compatibility, leading technology and friendly features are our basic goals when designing motherboards. Other than above mentioned design criteria, there are power users who are always seeking to push the limitation of the system performance by overclocking which we call them "Overclocker".

This section is dedicated to overclockers.

This high performance motherboard is designed for maximum **400MHz** CPU bus clock. But it comes with clock generator of **248MHz** when we design it to accommodate with future CPU bus clock. Not only that, the CPU clock ratio can be up to 24x that supports almost all of Pentium[®] 4 CPUs in the future and provides flexibility for overclockers.

But not guaranty.

Tip: Note that overclocking may also cause thermal problem. Please make sure that the cooling fan and the heatsink were adequate to dissipate excessive heat that's generated by overclocking the CPU.

Warning: The design of this product follows CPU and chipset vendor's design guideline. Any attempts to push beyond product specification are not recommended and you are taking your own risk to damage your system or important data. Before doing overclocking, you must make sure your components are able to tolerate such abnormal setting, especially CPU, DRAMs, hard disks, and AGP VGA cards.

VGA Card & Hard Disk

VGA and HDD is key components for overclocking, for your reference, the following list are what have been successful overclocked in our lab. Please note that AOpen can not guaranty they can be successful overclocked again. Please check the **Available Vendor List (AVL)** by link to our official website.

VGA: http://www.aopen.com.tw/tech/report/overclk/mb/vga-oc.htm

HDD: http://www.aopen.com.tw/tech/report/overclk/mb/hdd-oc.htm

Glossary

AC97

Basically, AC97 specification separates sound/modem circuit to two parts, digital processor and a <u>CODEC</u> for analogy I/O they are linked by AC97 link bus. Since digital processor can be put into motherboard main chipset, the cost of sound/modem onboard solution can be reduced.

ACPI (Advanced Configuration & Power Interface)

ACPI is the power management specification of PC97 (1997). It intends to save more power by taking full control of power management to operating system and bypass <u>BIOS</u>. The chipset or super I/O chip needs to provide standard register interface to operating system (such as Windows 98). This is a bit similar as the <u>PnP</u> register interface. ACPI defines ATX momentary soft power switch to control the power state transition.

AGP (Accelerated Graphic Port)

AGP is a bus interface targeted for high-performance 3D graphic. AGP supports only memory read/write operation and single-master single-slave one-to-one only. AGP uses both rising and falling edge of the 66MHz clock, for 2X AGP, the data transfer rate is 66MHz x 4byte x 2 = 528MB/s. AGP is now moving to 4X mode, 66MHz x 4byte x 4 = 1056MB/s. AOpen is the first company to support 4X AGP motherboards by both AX6C (Intel 820) and MX64/AX64 (VIA 694x), started from Oct 1999.

AMR (Audio/Modem Riser)

The <u>CODEC</u> circuit of AC97 sound/modem solution can be put on motherboard or put on a riser card (AMR card) that connects to motherboard through AMR connector.

AOpen Bonus Pack CD

A disc bundled with AOpen motherboard product; there are motherboard drivers, Acrobat Reader for <u>PDF</u> online manual and other useful utilities.

APM (Advanced Power Management)

Unlike <u>ACPI</u>, BIOS controls most APM power management functions. AOpen Suspend to Hard Drive is a good example of APM power management.

ATA (AT Attachment)

ATA is the specification of diskette interface. In 80's, many software and hardware manufacturers instituted the ATA specification together. The AT is meaning International Business Machines Corporation (IBM) personal computer/AT's bus structure.

ATA/66

ATA/66 uses both rising edge and falling edge but doubles <u>UDMA/33</u> transfer rate. The data transfer rate is 4 times of the PIO mode 4 or DMA mode 2, 16.6MB/s x4 = 66MB/s. To use ATA/66, you need special ATA/66 IDE cable.

AX4T II-133

ATA/100

ATA/100 is a new IDE specification under developing. ATA/100 uses both rising edge and falling edge as $\frac{ATA/66}{6}$ but clock cycle time is reduced to 40ns. The data transfer rate is $(1/40ns) \times 2$ bytes $\times 2 = 100MB/s$. To use ATA/100, you need special 80-wire IDE cable, the same as ATA/66.

BIOS (Basic Input/Output System)

BIOS is a set of assembly routine/program that reside in <u>EPROM</u> or <u>Flash ROM</u>. BIOS controls Input/output devices and other hardware devices of motherboard. In general, to provide hardware independent portability, operation system and drivers is required to access BIOS without directly access hardware devices.

Bus Master IDE (DMA mode)

The traditional PIO (Programmable I/O) IDE requires the CPU to involve in all the activities of the IDE access including waiting for the mechanical events. To reduce the workload of the CPU, the bus master IDE device transfers data from/to memory without interrupting CPU, and releases CPU to operate concurrently while data is transferring between memory and IDE device. You need the bus master IDE driver and the bus master IDE HDD to support bus master IDE mode.

CNR (Communication and Networking Riser)

The CNR specification provides the PC industry the opportunity to deliver a flexible and cost reduced method of implementing LAN, home networking, DSL, USB, wireless, audio and modem subsystems widely used in today's "connected PCs". The CNR specification is an open industry specification and is supported by OEMs, IHV card manufacturers, silicon supplier and Microsoft.

CODEC (Coding and Decoding)

Normally, CODEC means a circuit that can do digital to analog conversion and also the analog to digital conversion. It is part of <u>AC97</u> sound/modem solution.

DDR (Double Data Rated) SDRAM

DDR SDRAM utilizes the existing DRAM infrastructure and technology while doubling the nominal bandwidth available to systems in an easy to design and simple to adopt way. Initially a perfect solution for memory intensive server and workstation applications, DDR low cost and low voltage will ultimately make it an ideal solution for all segments of the PC market, high performance desktop and mobile PCs, Value PCs and even Internet Appliances and mobile devices.

DIMM (Dual In Line Memory Module)

DIMM socket has total 168-pin and supports 64-bit data. It can be single or double side, the golden finger signals on each side of PCB are different, and that is why it was called Dual In Line. Almost all DIMMs are made by <u>SDRAM</u>, which operate at 3.3V. Note that some old DIMMs are made by FPM/<u>EDO</u> and only operate at 5V. Do not confuse them with SDRAM DIMM.

DMA (Direct Memory Access)

Channel for communications between the memory and surrounding devices.

ECC (Error Checking and Correction)

The ECC mode needs 8 ECC bits for 64-bit data. Each time memory is accessed; ECC bits are updated and checked by a special algorithm. The ECC algorithm has the ability to detect double-bit error and automatically correct single-bit error while parity mode can only detect single-bit error.

EDO (Extended Data Output) Memory

The EDO DRAM technology is actually very similar to FPM (Fast Page Mode). Unlike traditional FPM that tri-states the memory output data to start the pre-charge activity, EDO DRAM holds the memory data valid until the next memory access cycle, that is similar to pipeline effect and reduces one clock state.

EEPROM (Electronic Erasable Programmable ROM)

Also known as E²PROM. Both EEPROM and <u>Flash ROM</u> can be re-programmed by electronic signals, but the interface technology is different. Size of EEPROM is much smaller than flash ROM.

EPROM (Erasable Programmable ROM)

Traditional motherboard stores BIOS code in EPROM. EPROM can only be erased by ultra-violet (UV) light. If BIOS has to be upgraded, you need to remove EPROM from motherboard, clear by UV light, re-program, and then insert back.

EV6 Bus

EV6 Bus in the technology of Alpha processor from Digital Equipment Corporation. EV6 bus uses both rising and falling clock edge to transfer data, similar as DDR SDRAM or ATA/66 IDE bus.

EV6 Bus Speed = CPU external bus clock x 2.

For example, 200 MHz EV6 bus is actually using 100 MHz external bus clock, but the equivalent speed is 200 MHz.

FCC DoC (Declaration of Conformity)

The DoC is component certification standard of FCC EMI regulations. This standard allows DIY component (such as motherboard) to apply DoC label separately without a shielding of housing.

FC-PGA (Flip Chip-Pin Grid Array)

FC means Flip Chip, FC-PGA is a new package of Intel for Pentium III CPU. It can plug into SKT370 socket, but require motherboard to add some signals on socket 370. That is, the motherboard needs to be redesigned. Intel is going to ship FC-PGA 370 CPU and phase out slot1 CPU.

Flash ROM

Flash ROM can be re-programmed by electronic signals. It is easier for BIOS to upgrade by a flash utility, but it is also easier to be infected by virus. Because of increase of new functions, BIOS size is increased from 64KB to 256KB (2M bit). AOpen AX5T is the first board to implement 256KB (2Mbit) Flash ROM. Now flash ROM size is moving to 4M bit on AX6C (Intel 820) and MX3W (Intel 810) motherboard. AOpen motherboard uses EEPROM for jumper-less and battery-less design.

FSB (Front Side Bus) Clock

FSB Clock means CPU external bus clock.
CPU internal clock = CPU FSB Clock x CPU Clock Ratio

²C Bus

See SMBus.

IEEE 1394

IEEE 1394 is a low-cost digital interface originated by Apple Computer as a desktop LAN and developed by the IEEE 1394 working group. The IEEE 1394 can transport data at 100, 200 or 400 Mbps. One of the solutions to connect digital television devices together at 200 Mbps. Serial Bus Management provides overall configuration control of the serial bus in the form of optimizing arbitration timing, guarantee of adequate electrical power for all devices on the bus, assignment of isochronous channel ID, and notification of errors. There are two type of IEEE 1394 data transfer: asynchronous and isochronous. Asynchronous transport is the traditional computer memory-mapped, load and store interface. Data requests are sent to a specific address and an acknowledgment is returned. In addition to an architecture that scales with silicon technology, IEEE 1394 features a unique isochronous data channel interface. Isochronous data channels provide guaranteed data transport at a pre-determined rate. This is especially important for time-critical multimedia data where just-in-time delivery eliminates the need for costly buffering.

Parity Bit

The parity mode uses 1 parity bit for each byte, normally it is even parity mode, that is, each time the memory data is updated, parity bit will be adjusted to have even count "1" for each byte. When next time, if memory is read with odd number of "1", the parity error is occurred and this is called single bit error detection.

PBSRAM (Pipelined Burst SRAM)

For Socket 7 CPU, one burst data read requires four QWord (Quad-word, 4x16 = 64 bits). PBSRAM only needs one address decoding time and automatically sends the remaining QWords to CPU according to a predefined sequence. Normally, it is 3-1-1-1, total 6 clocks, which is faster than asynchronous SRAM. PBSRAM is often used on L2 (level 2) cache of Socket 7 CPU. Slot 1 and Socket 370 CPU do not need PBSRAM.

PC-100 DIMM

SDRAM DIMM that supports 100MHz CPU FSB bus clock.

PC-133 DIMM

SDRAM DIMM that supports 133MHz CPU FSB bus clock.

PC-1600 or PC-2100 DDR DRAM

Based on FSB frequency, the DDR DRAM has 200MHz and 266MHz two type of working frequency. Because of DDR DRAM data bus is 64-bit, it provides data transfer bandwidth up to 200x64/8=1600MB/s, and 266x64/8=2100MB/s. Hence, the PC-1600 DDR DRAM is working with 100MHz and PC-2100 DDR DRAM is working with 133MHz FSB frequency.

PCI (Peripheral Component Interface) Bus

Bus for the internal connection of peripheral devices, high-speed data channel between the computer and expansion card.

PDF Format

A file format for electronic document, PDF format is independent from platform, you can read PDF file under Windows, Unix, Linux, Mac ... with different PDF reader. You can also read PDF file by web browser such as IE and Netscape, note that you need to install PDF plug-in first (Included in Acrobat Reader).

PnP (Plug and Play)

The PnP specification suggests a standard register interface for both BIOS and operating system (such as Windows 95). These registers are used by BIOS and operating system to configure system resource and prevent any conflicts. PnP BIOS or operating system will automatically allocate the IRQ/DMA/Memory. Currently, almost all the PCI cards and most ISA cards are already PnP compliant.

POST (Power-On Self Test)

The BIOS self-test procedure after power-on, sometimes, it is the first or the second screen shown on your monitor during system boot.

RDRAM (Rambus DRAM)

Rambus is a memory technology that uses large burst mode data transfer. Theoretically, the data transfer should be high than <u>SDRAM</u>. RDRAM is cascaded in channel operation. For Intel 820, only one RDRAM channel is supported, 16-bit data per channel, and this channel may have maximum 32 RDRAM devices, no matter how many <u>RIMM</u> sockets.

RIMM (Rambus Inline Memory Module)

184-pin memory module that supports <u>RDRAM</u> memory technology. A RIMM memory module may contain up to maximum of 16 RDRAM devices.

SDRAM (Synchronous DRAM)

SDRAM is one of the DRAM technologies that allow DRAM to use the same clock as the CPU host bus (<u>EDO</u> and FPM are asynchronous and do not have clock signal). It is similar as <u>PBSRAM</u> to use burst mode transfer. SDRAM comes in 64-bit 168-pin <u>DIMM</u> and operates at 3.3V. AOpen is the first company to support dual-SDRAM DIMMs onboard (AP5V), from Q1 1996

Shadow E²PROM

A memory space in Flash-ROM to simulate E²PROM operation, AOpen motherboard uses Shadow E²PROM for jumper-less and battery-less design

SIMM (Single In Line Memory Module)

SIMM socket is only 72-pin, and is only single side. The golden finger signals on each side of PCB are identical. That is why it was called Single In Line. SIMM is made by FPM or <u>EDO</u> DRAM and supports 32-bit data. SIMM had been phased out on current motherboard design.

SMBus (System Management Bus)

SMBus is also called I2C bus. It is a two-wire bus developed for component communication (especially for semiconductor IC). For example, set clock of clock generator for jumper-less motherboard. The data transfer rate of SMBus is only 100Kbit/s, it allows one host to communicate with CPU and many masters and slaves to send/receive message.

SPD (Serial Presence Detect)

SPD is a small ROM or <u>EEPROM</u> device resided on the <u>DIMM</u> or <u>RIMM</u>. SPD stores memory module information such as DRAM timing and chip parameters. SPD can be used by <u>BIOS</u> to decide best timing for this DIMM or RIMM.

Ultra DMA

Ultra DMA (or, more accurately, Ultra DMA/33) is a protocol for transferring data between a hard disk drive through the computer's data path (or bus) to the computer's random access memory (RAM). The Ultra DMA/33 protocol transfers data in burst mode at a rate of 33.3MB/s, twice as fast as the previous <u>Direct Access Memory (DMA)</u> interface. Ultra DMA was developed as a proposed industry standard by the Quantum corporation, makes of hard disk drives, and Intel, makes of chipset that support computer bus technology. Ultra DMA support in your computer means that it will boot (start) and open new applications more quickly. It will help users of graphic-intensive and applications that require large amounts of access to data on the hard disk drive. Ultra DMA uses Cyclical Redundancy Checking (CRC), offering a new level of data protection. Ultra DMA uses the same 40-pin IDE interface cable as PIO and DMA.

16.6MB/s x2 = 33MB/s

16.6MB/s x4 = 66MB/s

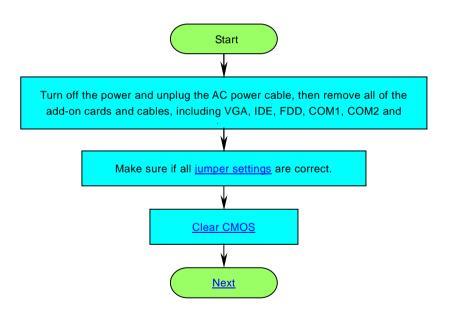
16.6MB/s x6 = 100MB/s

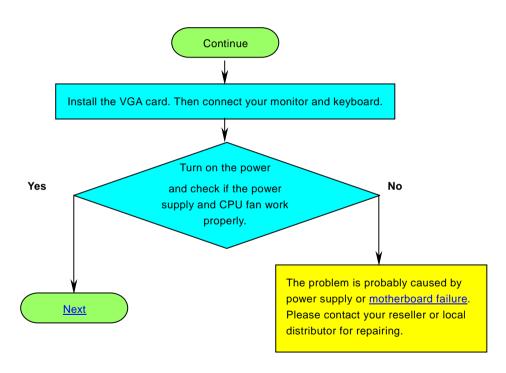
USB (Universal Serial Bus)

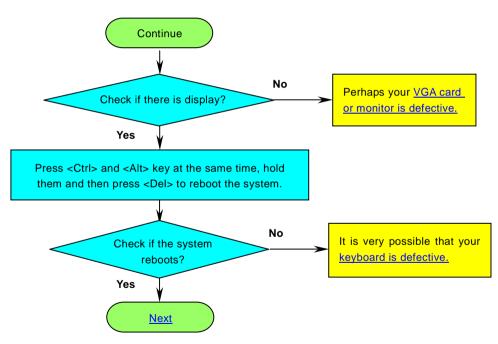
USB is a 4-pin serial peripheral bus that is capable of cascading low/medium speed peripherals (less than 10Mbit/s) such as keyboard, mouse, joystick, scanner, printer and modem. With USB, the traditional complex cables from back panel of your PC can be eliminated.

VCM (Virtual Channel Memory)

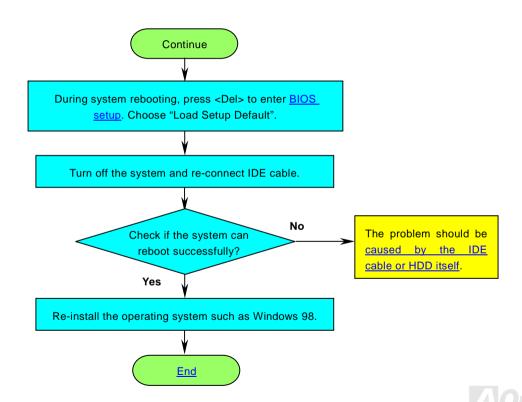
NEC's Virtual Channel Memory (VCM) is a new DRAM core architecture that dramatically improves the memory system's ability to service multimedia requirements. VCM increases memory bus efficiency and performance of any DRAM technology by providing a set of fast static registers between the memory core and I/O pins. Using VCM technology results in reduced data access latency and reduced power consumption.


ZIP file


A compressed file format to reduce file size. To unzip file, run shareware PKUNZIP (http://www.pkware.com/) for DOS and other operating system or WINZIP (http://www.winzip.com/) for windows environment.


Troubleshooting

If you encounter any trouble to boot you system, follow the procedures accordingly to resolve the problem.



Dear Customer,

Thanks for choosing AOpen products. To provide the best and fastest service to our customer is our first priority. However, we receive numerous emails and phone-calls worldwide everyday, it is very hard for us to serve everyone on time. We recommend you follow the procedures below and seek help before contact us. With your help, we can then continue to provide the best quality service to more customers.

Thanks very much for your understanding!

AOpen Technical Supporting Team

Online Manual: Please check the manual carefully and make sure the jumper settings and installation procedure are correct.

http://www.aopen.com/tech/download/manual/default.htm

Test Report: We recommend choosing board/card/device from the compatibility test reports for assembling your PC. http://www.aopen.com/tech/report/default.htm

FAQ: The latest FAQ (Frequently Asked Questions) may contain a solution to your problem. http://www.aopen.com/tech/faq/default.htm

Ļ

Download Software: Check out this table to get the latest updated BIOS/utility and drivers.

http://www.aopen.com/tech/download/default.htm

News Group: News posted by computer experts, you are welcome to join any discussion here.

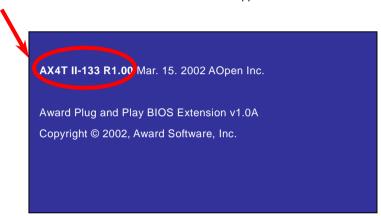
http://www.aopen.com/tech/newsgrp/default.htm


Contact Distributors/Resellers: We sell our products through resellers and integrators. They should know your system configuration very well and should be able to solve your problem more efficiently than us. After all, their attitude of service is an important reference for you if next time you want to buy something else from them.

Contact Us: Please prepare detail system configuration and error symptom before contacting us. The part number, serial number and BIOS version are also very helpful.

Part Number and Serial Number

The Part Number and Serial number are printed on bar code label. You can find this bar code label on the outside packing, on ISA/CPU slot or on component side of PCB. For example:



P/N: 91.88110.201 is part number, S/N: 91949378KN73 is serial number.

Model name and BIOS version

Model name and BIOS version can be found on upper left corner of first boot screen (POST screen). For example:

AX4T II-133 is model name of motherboard, R1.00 is BIOS version.

Product Registration

Thank you for choosing AOpen product. AOpen encourages you to spend few minutes in completing the following product registration. To register your product will ensure the high quality of services from AOpen. After the registration, you will:

- Have opportunities to play online slot machine and win a prize from AOpen by accumulating your bonuses for later prize exchange.
- Be upgraded to gold membership of Club AOpen program.
- Receive email notification about product safety alerts. Its purpose is to alert consumers quickly and conveniently when
 products contain technical issues.
- Receive email notification about latest product's announcements.
- Be able to personalize your AOpen web pages.
- Receive e-mail notification about latest BIOS/Driver/Software release information.
- Have opportunities to participate special product promotional programs.
- Enjoy higher service priority to receive technical assistance provided by AOpen specialists worldwide.
- Be able to join the discussions of web-based news groups.

AOpen makes sure that the information you provide is encrypted, so that it cannot be read or intercepted by other people or companies. Further, AOpen will not disclose any of information you submitted under any conditions. Please consult our <u>online privacy policy</u> for further information on our company policy.

Note: If registering products purchased from different dealers/retails and/or purchased on different dates, please submit a separate form for each product.

Please do not hesitate contact us if you have any problem about our products. Any opinion will be appreciated.

Pacific Rim

AOpen Inc.

Tel: 886-2-3789-5888 Fax: 886-2-3789-5399 Europe

AOpen Computer b.v.

Tel: 31-73-645-9516 Fax: 31-73-645-9604 America

AOpen America Inc. Tel: 1-408-922-2100

Fax: 1-408-922-2935

China

艾尔鹏国际上海(股)有限公司

Tel: 86-21-6225-8622 Fax: 86-21-6225-7926 Germany

AOpen Computer GmbH. Tel: 49-2102-157700

Fax: 49-2102-157799

Japan

AOpen Japan Inc. Tel: 81-048-290-1800

Fax: 81-048-290-1820

Web Site: http://www.aopen.com/

E-mail: Send us email by going through the contact form below.

English http://www.aopen.com/tech/contact/techusa.htm
Japanese http://www.aopen.co.jp/tech/contact/techip.htm
Chinese http://www.aopen.com.tw/tech/contact/techde.htm
Simplified Chinese http://www.aopen.com.cn/tech/contact/techcn.htm

