User's Manual

An AMD Socket A Processor based mainboard (100/133MHz)
Supports PC1600/PC2100 Memory Modules

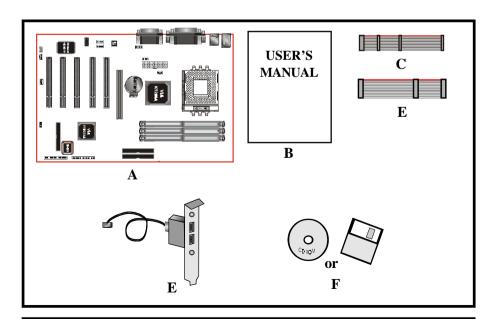
TRADEMARK

All products and company names are trademarks or registered trademarks of their respective holders.

These specifications are subject to change without notice.

Manual Revision 1.0 January 11, 2002

Table of Contents


	Page
Section 1	Introduction
	Components Checklist1-1
	Overview
	AMD Duron™ & Athlon™ Processors1-2
	Accelerated Graphics Port1-3
	Ultra ATA66/100/1331-3
	Hardware Monitoring1-3
	Mainboard Form-Factor1-4
	I/O Shield Connector1-5
	Power-On/Off (Remote)1-5
	System Block Diagram1-6
Section 2	Features
	Mainboard Features2-1
Section 3	Installation
	Mainboard Detailed Layout3-2
	Easy Installation Procedure
	CPU Insertion3-3
	Jumper Settings3-5
	System Memory Configuration3-6
	Device Connectors3-8
	STR (Suspend To RAM) Function 3-12
Section 4	Award BIOS Setup
	BIOS Instructions4-1
	Standard CMOS Setup42
	Advanced BIOS Features43
	Advanced Chipset Features4-7

	Integrated Peripherals4-12
	Power Management Setup4-17
	PNP/PCI Configuration Setup4-21
	PC Health Status4-23
	Frequency/Voltage Control4-25
	Defaults Menu4-26
	Supervisor/User Password Setting4-27
	Exit Selecting4-28
Section 5	Driver Installation
	Easy Driver Installation 5-1
Appendix	
	Appendix A
	GHOST 5.1/6.03 Quick User's Guide (Optional) A-1
	Appendix B
	Update Your System BIOSB-1
	Appendix C
	EEPROM BIOS Remover
	Appendix D
	Avance® Media Player User's Guide

Section 1 INTRODUCTION

Components Checklist

- ✓ A. (1) Mainboard
- ✓ B. (1) User's manual
- ✓ C. (1) Floppy ribbon cable
- ✓ D. (1) ATA-66/100 Hard drive ribbon cable
 - E. (1) USB Cable (Optional)
- ✓ F. (1) Driver and utility

AMD Duron™ & Athlon™ Processors

The AMD AthlonTM is a seventh-generation micro architecture with an integrated L2 cache, which is powerful enough to support the bandwidth requirements of a large range of applications, hardware, graphics, and memory technologies. These processors implement advanced design techniques such as:

- Socket A (PGA 462)
- ◆ 200/266MHz system interface based on the AlphaTM EV6 bus protocol.
- Three out-of-order, superscalar, pipelined Multimedia Units.
- Three out-of-order, superscaler, pipelined Integer Units.
- Fixed-sized internal instruction formats (MacroOPs).
- 72-entry Instruction Control Units.
- AMD enhanced 3DNow!TM technology
- L1 and L2 caches.
- Dynamic branch prediction.

Socket A is the name for AMD's new socketed interface designed to support both AMD DuronTM and AMD AthlonTM processors. This innovation is made possible by integrating the L2 cache memory on chip with the processor. Socket A will help enable smaller enclosures, and ultimately result in a wider variety of solutions in the market.

The AMD Duron™ & Athlon™ processors in the Socket A format continue to deliver the ultimate performance for cutting-edge applications. Both bring to desktop systems running industry-standard x86 software superscalar RISC performance. Being provided in the Socket A format they are the world's most powerful x86 processors. They easily deliver the highest integer, floating-point, and 3D multimedia performance for applications running on x86 platforms around.

The AMD DuronTM processor is derived from the AMD AthlonTM processor core. It features full-speed, on-chip cache memory, a 200MHz front side system bus, and enhanced 3DNow!TM technology. Although both processors are related, there are key differences. The AMD AthlonTM processor is targeted at the performance segment, and as such will have more cache memory and higher clock speeds.

Accelerated Graphics Port (AGP or A.G.P.)

Typically, 3D graphics rendering requires a tremendous amount of memory, and demands ever increasing throughput speed as well. As 3D products for the personal computer become more and more popular, these demands will only increase. This will cause a rise in costs for both end users and manufacturers. Lowering these costs as well as improving performance is the primary motivation behind AGP. By providing a massive increase in the bandwidth available between the video card and the processor, it will assist in relieving some of these pressures for quite sometime.

Ultra ATA/66/100/133

The board provides Ultra ATA/66/100/133 Bus Master IDE controller, that support Ultra ATA/66/100/133 protocols, perfect for such demanding applications as real-time video, multimedia, and high performance operating system. A new IDE cable is required for Ultra ATA/66/100/133. This cable is an 80 conductor cable; however the connectors are, of course, backwards compatible with ATA/33.

Hardware Monitoring

Hardware monitoring allows you to monitor various aspects of your systems operations and status. The features include CPU temperature, voltage and RPM of fan.

Mainboard Form-Factor

The board is designed with ATX form factor - the new industry standard of chassis. ATX form factor is essentially a Baby-AT baseboard rotated 90 degrees within the chassis enclosure and a new mounting configuration for the power supply. With these changes the processor is relocated away from the expansion slots, allowing them all to hold full length add-in cards. ATX defines a double height aperture to the rear of the chassis which can be used to host a wide range of onboard I/O. Only the size and position of this aperture is defined, allowing PC manufacturers to add new I/O features (e.g.; TV input, TV output, joystick, modem, LAN, etc.) to systems. This will help systems integrators differentiate their products in the marketplace, and better meet your needs.

- Smaller size promotes a smaller system size.
- I/O shield does not need to be retooled in an ATX 2.01 or later. The mainboard should be used in an ATX 2.01 (or later) compliant case.
- A smaller power supply can be used. High integration on mainboard reduces the system cost.

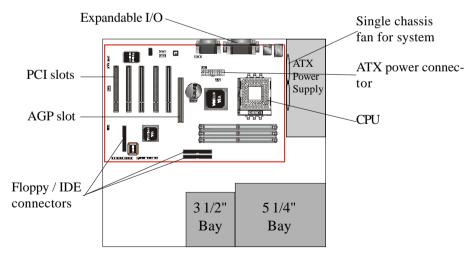


Figure 2: Summary of ATX chassis features

I/O Shield Connector

The board is equipped with an I/O back panel. Please use the appropriate I/O shield (figure 3).

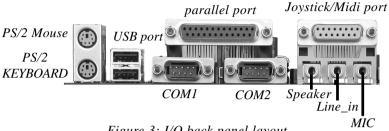


Figure 3: I/O back panel layout

Power-On/Off (Remote)

The board has a single 20-pin connector for ATX power supplies. For ATX power supplies that support the Remote On/Off feature, this should be connected to the systems front panel for system Power On/Off button. The systems power On/Off button should be a momentary button that is normally open.

The board has been designed with "Soft Off" functions. You can turn Off the system from one of two sources: The first is the front panel Power On/Off button, and the other is the "Soft Off" function (coming from the M/B's onboard circuit controller) that can be controlled by the operating system such asWindows® 95/98/SE/ME or Windows®2000.

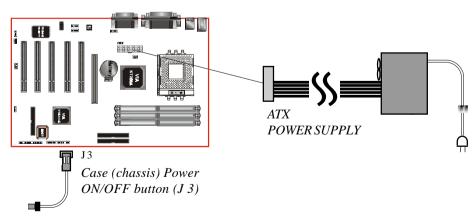


Figure 4: Simple ATX Power ON/OFF Controller

System Block Diagram

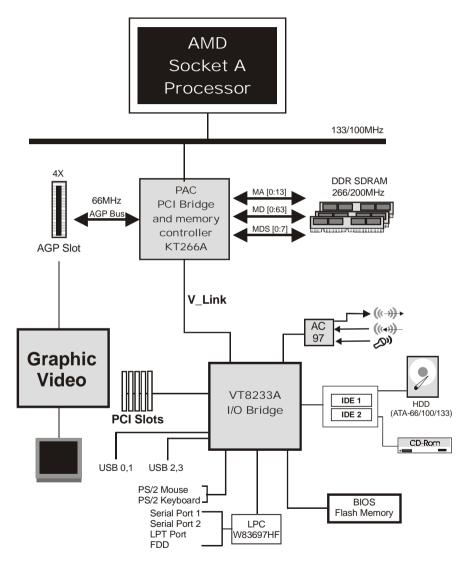


Figure 5: System Block Diagram

Section 2 FEATURES

Mainboard Features:

◆ PROCESSOR

 The Socket A compatible AMD AthlonTM XP processor 1500+ to 1800+, and 600MHz to 1.4GHz AMD AthlonTM and AMD DuronTM Processors

◆ CHIPSET

VIA KT266A AGPset (KT266A + VT8233A)

◆ DRAM MODULE

- 184pin DDR DIMM x 3 for PC1600/2100 Memory
- DRAM Size: 64MB to 1.5GB

◆ EXPANSION SLOT

- PCI x 5, 4X AGP x 1

◆ ONBOARDI/O

Winbond 83697HF LPC I/O integrated with

- FDD, Parallel and Serial, Fast IR, Game Port

♦ ONBOARD PCI / IDE

- PCI Bus IDE Port with PIO / Ultra DMA-100/133 x 2 (Up to 4 Devices)

♦ I/O CONNECTOR

- PS/2 Mouse and PS/2 style Keyboard
- COM1, COM2, Printer, Audio-in/out, MIC & Game Port connectors

♦ USB

- USB connector x 4 (2 for Opt.)

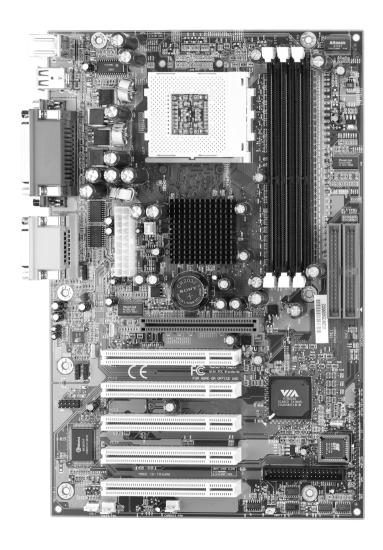
Features

◆ BIOS

- Award Plug & Play BIOS

◆ Built-in AC97 Digital Audio

- Dual full-duplex Direct Sound channels
- FM synthesis for legacy compatibility
- Supports game and MIDI port


◆ EXTENDED FUNCTION

- Supports Hardware Monitoring Function by W83697HF
- Supports exclusive KBPO (KeyBoard Power On) Function via BIOS
- Supports Wake-On-LAN Function
- Supports STR (Suspend To RAM) power saving Function
- Supports CPU Clock and CPU Ratio settings via BIOS
- Supports CPU Vcore, Memory and AGP Voltage setting via BIOS

♦ FORM FACTOR

- 305mm x 200mm ATX Size

Section 3 INSTALLATION

Mainboard Detailed Layout

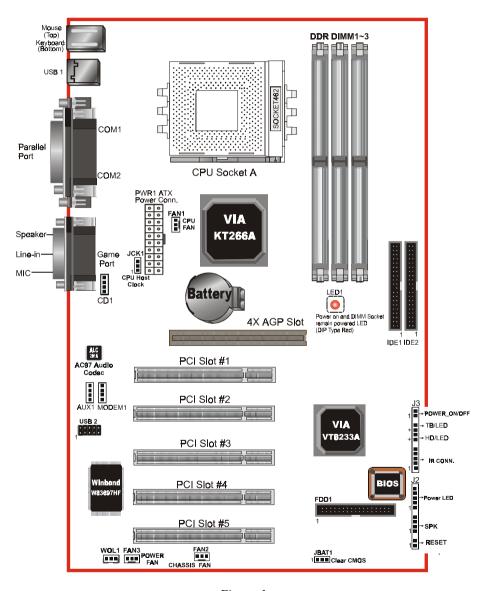


Figure 1

Easy Installation Procedure

The following must be completed before powering on your new system:

- 3-1. CPU Insertion
- 3-2. Jumper Settings
- 3-3. System memory Configuration
- 3-4. Device Connectors
- 3-5. STR Function

Section 3-1 CPU Insertion

CPU Insertion: (use AMD AthlonTM as reference)

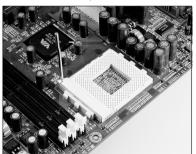


Figure 2

Step 1

Open the socket by raising the actuation lever.

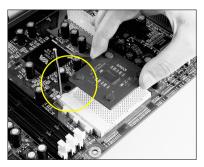


Figure 3

Step 2

Insert the processor.

Ensure proper pin 1 orientation by aligning the FC-PGA corner marking with the socket corner closest to the actuation arm tip. The pin field is keyed to prevent mis-oriented insertion.

Don't force processor into socket. If it does not go in easily, check for mis-orientation and debris.

Make sure the processor is fully inserted into the socket on all sides.

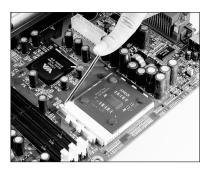
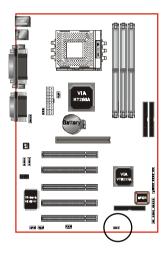


Figure 4

Step 3

Close the socket by lowering and locking the actuation lever.


Step 4

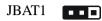
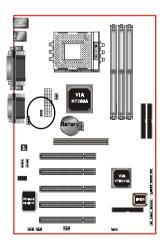

Thermal compound and qualified heatsink recommended by AMD are a must to avoid CPU overheat damage. For more information about installing your CPU, please refer to the AMD website article "Socket A AMD processor and Heatsink Installation Guide" http://www.amd.com/products/cpg/athlon/pdf/23986.pdf.

Figure 5


Section 3-2 Jumper Settings

CMOS Clear

- = 1-2 Normal (Default)
- = 2-3 Clear CMOS

JCK1

CPU Host Clock Select

- = 1-2 100MHz (Default)
- = 2-3 133MHz

Section 3-3 System Memory Configuration

Memory Layout

The board supports (3) PC1600/2100 184-pin DIMMs (Dual In-line Memory Module). The DIMMs is for DDR SDRAM (Double-Data-Rate Synchronous DRAM) only.

Figure 6 and Table 1 show several possible memory configurations.

DDR DIMM 1	Bank 0/1	DDR
DDR DIMM 2	Bank 2/3	Synchronous
DDR DIMM 3	Bank 4/5	DRAM

Figure 6

Total Memory	DDR DIMM 1 DDR DIMM 2 (Bank 0/1) (Bank 2/3)		DDR DIMM 3 (Bank 4/5)
= 512MB Maximum	DDR SDRAM* 64MB, 128MB, 256MB, 512MB X 1	None	None
= 1GB Maximum	DDR SDRAM* 64MB, 128MB, 256MB, 512MB X 1	DDR SDRAM* 64MB, 128MB, 256MB, 512MB X 1	None
= 1.5GB Maximum	DDR SDRAM* 64MB, 128MB, 256MB, 512MB X 1	DDR SDRAM* 64MB, 128MB, 256MB, 512MB X 1	DDR SDRAM* 64MB, 128MB, 256MB, 512MB X 1

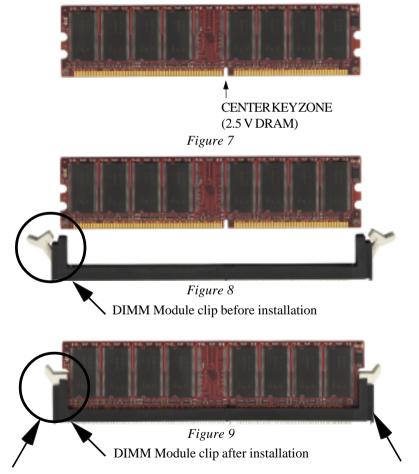
Table 1

^{*} DDR SDRAM supports 64, 128, 256, 512MB DIMM modules.

^{*} We recommend using PC1600 Memory Module only for front-side bus 100MHz.

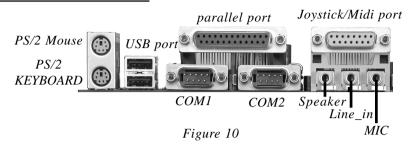
^{*} DO NOT MIX the unbuffered and registered DDR SDRAM on DIMM1, DIMM2 and DIMM3 socket.

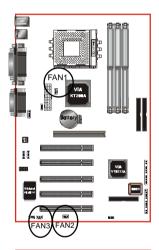
^{*} This mainboard doesn't support ECC memory module.


^{*} Supports PC1600 modules with 2-2-2 timing.

^{*} Supports PC2100 modules with 2-2-2 timing.

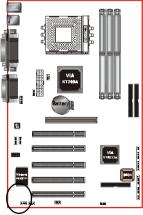
DIMM Module Installation


Figure 7 displays the notch marks and what they should look like on your DDR DIMM memory module.

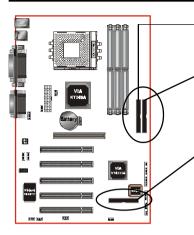

DIMMs have 184-pins and one notch that will match with the onboard DDR DIMM socket. DIMM modules are installed by placing the chip firmly into the socket at a 90 degree angle and pressing straight down (figure 8) until it fits tightly into the DIMM socket (figure 9).

To remove the DIMM module simply press down both of the white clips on either side and the module will be released from the socket.

Section 3-4 Device Connectors

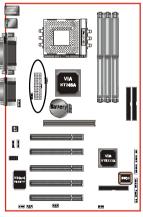


FAN1 / FAN2 / FAN3:

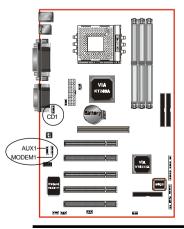

• The plug-in for CPU/Chassis/Power Fan power

FAN1:	FAN2:	FAN3:
CPU Fan	Chassis Fan	Power Fan
Rotation————————————————————————————————————	GND +12V Rotation	

WOL1: WOL (Wake On LAN) Connector Reserved for NIC (Network Interface Card) to wake the system.



• IDE1: Ultra DMA-66/100/133 Primary IDE Connector (Blue color)


IDE2: Ultra DMA-66/100/133 Secondary IDE Connector (Blue color)

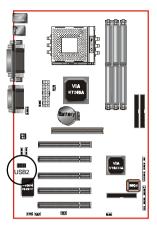
FDD1: Floppy Controller Connector (Black color)

PW1: ATX Power Connector

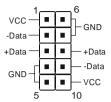
• 20-pin power connector

CD1: CD Audio_IN Connector

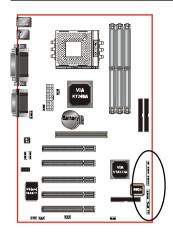
CD_IN_Right
CD_Reference


AUX1: Auxiliary Line_IN Connector

AUX_IN_Right
GND


AUX_IN_Left

MODEM1: Telephony Connector for Modem audio output



USB2: USB port header pins for share with four USB ports.

USB port header pin descriptions.

PIN#	Wire color	Signal Name	Comment
1	Red	Vcc	Cable Power
2	White	-Data	Data
3	Green	+Data	Data
4	Black	Ground	Cable Ground
5	Black	Ground	Case Ground
6	Black	Ground	Case Ground
7	Black	Ground	Cable Ground
8	Green	+Data	Data
9	White	-Data	Data
10	Red	Vcc	Cable Power

◆ Power On/Off

(This is connected to the power button on the case. Using the Soft-Off by Pwr-BTTN feature, you can choose either Instant Off (turns system off immediately), or 4 sec delay (you need to push the button down for 4 seconds before the system turns off). When the system is in 4 sec delay mode, suspend mode is enabled by pushing the button momentarily.)

◆ Turbo LED indicator

LED ON when higher speed is selected

• IDE LED indicator

LED ON when Onboard PCI IDE Hard disks is activate

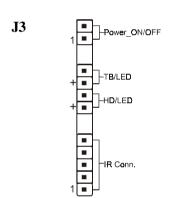
• IR Connector

- 1. VCC
- 2. NC
- 4. GND 5. IRTX
- 3. IRRX

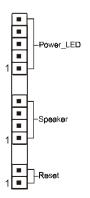
Power LED

Power LED connector

- 1. Power LED(+) 4. NC
- 2. N/C
- 5. GND
- 3. GND


• Speaker

Connect to the system's speaker for beeping


- 1. Speaker
- 3. GND
- 2. N/C
- 4. GND

• Reset

Closed to restart system.

3-5 STR (Suspend To RAM) Function

The board supports the STR power management state by maintaining the appropriate states on the DDR SDRAM interface signals. The power source must be kept alive to the DDR SDRAM during STR (ACPI S3). Advanced Configuration Power Interface (ACPI) provides more Energy Saving Features for operating systems that supporting Instant ON and QuickStartTM function.

- 1. To enable the ACPI function and use the STR functionally to save your system energy, you are recommended to confirm the following requirements:
 - a. Please do install all ACPI qualified add-on cards such as AGP, LAN, Modem cards.
 - b. In BIOS, please select "ACPI function: Enable" and "ACPI Suspend Type: S3(STR)" in the Power Management Setup menu.
 - c. Then, please install the Windows® 98SE/ME or Windows® 2000.
 - d. Restart your system.
 - e. Getting in to the "Advanced" of the Power Management icon of Control Panel, and selecting the "Stand By" in the Power Buttons.
- Getting start with STR function, please click the START button and choose Shut Down. Then, select the Stand By option in the Shut Down Windows box to get into STR mode.

Here are the differences between STR power saving mode and Green (or Suspend) mode:

- a. It is the most advanced Power Management mode
- b. It cuts all the power supplied to peripherals except to Memory max. power saving
- c. It saves and keeps all on-screen data including any executed applications to DDR SDRAM.

d. You must push the Power button connected with onboard J3 pin to wake up your system (not to click to mouse or press keyboard to wake up the system).

Just pushing Power button, your system will quickly back to the last screen for you.

The "LED Indicator for ACPI Status" table shown below will guide you and give you a reference for ACPI status on this mainboard.

ACPI Onboard's LED Status Indicator Table					
Onboard's	Status				
LED Location	Plug in the ATX Power Core	Power ON J3(PW-ON)	Green Mode (S1)	STR (S3)	Shutdown (Soft-OFF) (S5)
LED1 (Red LED)	OFF	ON	ON	ON	OFF
J2 PW_LED	OFF	ON	Blinking	Blinking	OFF

Page Left Blank

Section 4 AWARD BIOS SETUP

Main Menu

Award's ROM BIOS provides a built-in Setup program which allows user to modify the basic system configuration and hardware parameters. The modified data will be stored in a battery-backed CMOS, so that data will be retained even when the power is turned off. In general, the information saved in the CMOS RAM will stay unchanged unless there is a configuration change in the system, such as hard drive replacement or a device is added.

It is possible for the CMOS battery to fail, this will cause data loss in the CMOS only. If this does happen you will need to reconfigure your BIOS settings.

To enter the Setup Program:

Power on the computer and press the key immediately, this will bring you into the BIOS CMOS SETUP UTILITY.

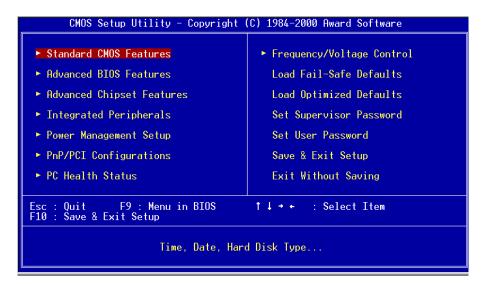


Figure 1: CMOS Setup Utility

The menu displays all the major selection items. Select the item you need to reconfigure. The selection is made by moving the cursor (press any direction key) to the item and pressing the 'Enter' key. An on-line help message is displayed at the bottom of the screen as the cursor is moved to various items which provides a better understanding of each function. When a selection is made, the menu of the selected item will appear so that the user can modify associated configuration parameters.

4-1 Standard CMOS Setup

Choose "Standard CMOS Setup" in the CMOS SETUP UTILITY Menu (Figure 2). The Standard CMOS Setup allows the user to configure system settings such as the current date and time, type of hard disk drive installed, floppy drive type, and display type. Memory size is auto-detected by the BIOS and displayed for your reference. When a field is highlighted (use direction keys to move the cursor and the <Enter> key to select), the entries in the field can be changed by pressing the <PgDn> or the <PgUp> key.

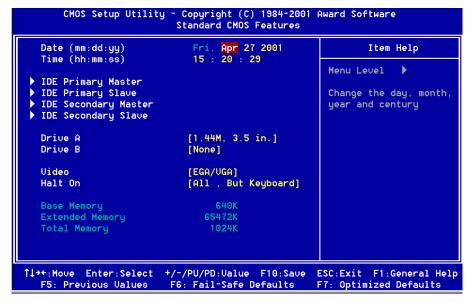


Figure 2: Standard CMOS Setup

- NOTE: If the hard disk Primary Master/Slave and Secondary Master/
 Slave are set to Auto, then the hard disk size and model will be
 auto-detected.
- NOTE: The "Halt On:" field is used to determine when to halt the system by the BIOS if an error occurs.
- NOTE: Floppy 3 Mode support is a mode used to support a special 3.5" drive used in Japan. This is a 3.5" disk that stores only 1.2 MB, the default setting for this is disabled.

4-2 Advanced BIOS Features

Selecting the "BIOS FEATURES SETUP" option in the CMOS SETUP UTILITY menu allows users to change system related parameters in the displayed menu. This menu shows all of the manufacturer's default values for the board.

Pressing the [F1] key will display a help message for the selected item.

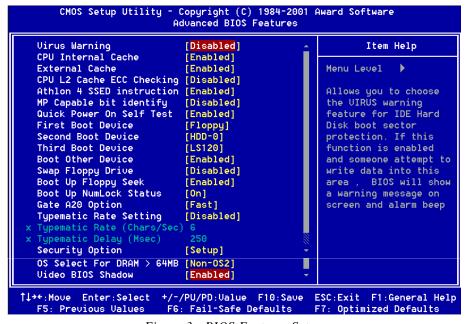


Figure 3: BIOS Features Setup

Virus Warning: During and after the system boots up, any attempt to write to the boot sector or partition table of the hard disk drive will halt the system and an error message will appear.

You should then run an anti-virus program to locate the virus. Keep in mind that this feature protects only the boot sector, not the entire hard drive.

The default value is Disabled.

Enabled: Activates automatically when the system boots up causing a warning message to appear when anything attempts to access the boot sector.

Disabled: No warning message will appear when anything attempts to access the boot sector.

Note: Many disk diagnostic programs that access the boot sector table can trigger the virus warning message. If you plan to run such a program, we recommend that you first disable the virus warning.

CPU Internal Cache: This controls the status of the processor's internal cache area. The default is Enabled.

Enabled: This activates the processor's internal cache thereby increasing performance.

Disabled: This deactivates the processor's internal cache thereby lowering performance.

External (L2) Cache: This controls the status of the external (L2) cache area. The default is Enabled.

Enabled: This activates the CPU's L2 cache thereby increasing performance. **Disabled**: This deactivates the CPU's L2 cache thereby lowering performance.

CPU L2 Cache ECC Checking: This control if the CPU's L2 Cache will support Error Checking and Correcting (ECC). The default is Disabled.

Enabled: Enables ECC support for the CPU's L2 cache. Performance will decrease $2\% \sim 4\%$.

Disabled: Disables ECC support for the CPU's L2 cache.

Athlon 4 SSED instruction: This item allows you to disable Athlon 4 new SSED instruction. The default is Enabled.

The choice: Enabled, Disabled.

MP Capable bit identify: This item allows you to identify Athlon MP

Processor, if this function is Enabled. The default is Disabled.

The choice: Enabled, Disabled.

Quick Power On Self Test: This category speeds up the Power On Self Test (POST). The default is Enabled.

Enabled: This setting will shorten or skip of the items checked during POST.

Disabled: Normal POST.

First /Second/Third/Other Boot Device: The BIOS attempts to load the operating system from the devices in the sequence selected in these items.

The choice: Floppy, LS120, HDD-0, SCSI, CDROM, HDD-1, HDD-2, HDD-3, ZIP100, USB-FDD, USB-ZIP, USB-CDROM, USB-HDD, LAN, Disabled.

Swap Floppy Drive: This will swap your physical drive letters A & B if you are using two floppy disks. The default is Disabled.

Enabled: Floppy A & B will be swapped under the O/S.

Disabled: Floppy A & B will be not swapped.

Boot Up Floppy Seek: During Power-On-Self-Test (POST), BIOS will determine if the floppy disk drive installed is 40 or 80 tracks. Only 360K type is 40 tracks while 760K, 1.2MB and 1.44MB are all 80 tracks. The default is Enabled.

Enabled: The BIOS will search the floppy disk drive to determine if it is 40 or 80 tracks.

Disabled: The BIOS will not search for the type of floppy disk drive by track number.

Note: BIOS can not tell the difference between 720K, 1.2MB and 1.44MB drive types as they are all 80 tracks.

Boot Up NumLock Status: This controls the state of the NumLock key when the system boots. The default is On.

On: The keypad acts as a 10-key pad.

Off: The keypad acts like the cursor keys.

Gate A20 Option: This refers to the way the system addresses memory above 1MB (extended memory). The default is Normal.

BIOS

Normal: The A20 signal is controlled by the keyboard controller or chipset

hardware.

Fast: The A20 signal is controlled by Port 92 or chipset specific method.

Typematic Rate Setting: This determines the keystrokes repeat rate.

The default is Disabled.

Enabled: Allows typematic rate and typematic delay programming.

Disabled: The typematic rate and typematic delay will be controlled by the

keyboard controller in your system.

Typematic Rate (Chars/Sec): This is the number of characters that will be repeated by a keyboard press. The default is 6.

The Choice: 6, 8, 10, 12, 15, 20, 24, 30 characters per second.

Typematic Delay (msec): This setting controls the time between the first and the second character displayed by typematic auto-repeat. The default is 250.

The Choice: 250, 500, 750, 1000 msec.

Security Option: This category allows you to limit access to the System and Setup, or just to Setup. The default is Setup.

System: The system will not boot and the access to Setup will be denied if the

correct password is not entered at the prompt.

Setup: The system will boot; but the access to Setup will be denied if the

incorrect password is not entered at the prompt.

OS Select For DRAM > 64MB: Some operating systems require special handling. Use this option only if your system has greater than 64MB of memory. The default is Non-OS2.

OS2: Select this if you are running the OS/2 operating system with greater

than 64MB of RAM.

Non-OS2: Select this for all other operating systems and configurations.

Video BIOS Shadow: This option allows video BIOS to be copied into RAM. Video Shadowing will increase the video performance of your system. The default is Enabled.

Enabled: Video shadow is enabled.

Disabled: Video shadow is disabled.

4-3 Advanced Chipset Features

Choose the "CHIPSET FEATURES SETUP" in the CMOS SETUP UTILITY menu to display following menu.

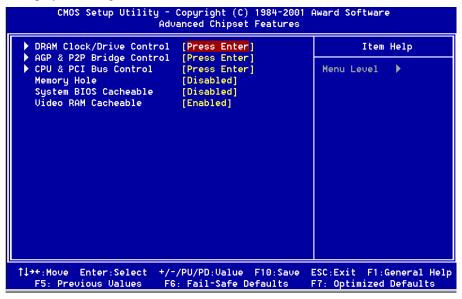
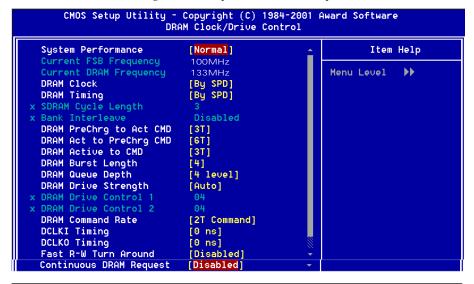



Figure 4: Chipset Features Setup

▶ DRAM Clock/Drive Control

System Performance: This item will help you to configure your system performance quickly and easily. There are four selections. When a selection is made, the other related items will automatically vary values.

The Choice: Normal, Fast, Fastest, Turbo.

Note: If you select the higher performance, compatibility problem could be occurred.

Current FSB Frequency: CPU clock frequency information. (No option/Display only).

Current DRAM Frequency: DRAM frequency information. (No option/Display only).

DRAM Clock: The item will synchronize/asynchronize DRAM clock operation.

100MHz: DRAM is running at 100MHz frequency. 133MHz: DRAM is running at 133MHz frequency.

By SPD: SDRAM clock by SPD data.

DRAM Timing: Select SPD for setting SDRAM timing by SPD.

The Choice: Manual, SPD.

SDRAM Cycle length: This setting defines the CAS timing parameter of the SDRAM in terms of clocks. Default is by SPD.

The Choice: 2, 2.5, 3.

Bank Interleave: The item allows you to set how many banks of SDRAM support in your mainboard. Default is by SPD.

The Choice: 2 Bank, 4 Bank, Disabled.

DRAM PreChrg to Act CMD: Setup the minimum row precharge time.

The Choice: 2T, 3T.

DRAM Act to PreChrg CMD: Setup the minimum RAS pulse width.

The Choice: 5T, 6T.

DRAM Active to CMD: Setup the minimum CAS to RAS delay.

The Choice: 2T, 3T.

DRAM Burst Length:

The Choice: 4, 8.

DRAM Queue Depth:

The Choice: 4 level, 2 level, 3 level.

DRAM Drive Strength: Setup the DRAM's driving current strength.

The Choice: Auto, Manual.

DRAM Command Rate: Setup the timing at each cycle.

The Choice: 1T Command, 2T Command.

DCLKI/O Timing:

The Choice: 0ns, 0.5ns, 1ns, Auto.

Fast R-W Turn Around: This item controls the DRAM timing. It allows you

to enable/disable the fast/write turn around.

The Choice: Enabled, Disabled.

Continuous DRAM Request:

The Choice: Enabled, Disabled.

CMOS Setup Utility - Copyright (C) 1984-2001 Award Software AGP & P2P Bridge Control		
AGP Aperture Size AGP Mode	[64M]	Item Help
AGP Driving Control	[4X] [Auto]	Menu Level
x AGP Driving Value AGP Fast Write	DA [Disabled]	
AGP Master 1 WS Write AGP Master 1 WS Read	[Disabled] [Disabled]	

▶ AGP & P2P Bridge Control

AGP Aperture Size: The amount of system memory that the AGP card is

allowed to share with. The default is 64MB.

The Choice: 4, 8, 16, 32, 64, 128, 256MB.

AGP Mode: Chipset AGP Mode support.

The choice: 1X, 2X, 4X.

AGP Driving Control: This item allows you to adjust the AGP driving force. Choose Manual to key in a AGP Driving Value in the next selection. This field is recommended to set in **Auto** for avoiding any error in your system.

AGP Fast Write: Selecting Enabled allows to use Fast Write Protocol for 4X AGP card.

AGP Master 1 WS Write: When Enabled, Writes to the AGP (Accelerated Graphics Port) are executed with one wait states.

The Choice: Enabled, Disabled.

AGP Master 1 WS Read: When Enabled, Reads to the AGP (Accelerated

Graphics Port) are executed with one wait states.

The Choice: Enabled, Disabled.

CMOS Setup Utility - Copyright (C) 1984-2001 Award Software CPU & PCI Bus Control			
PCI1 Master 0 WS Write [Enabled] PCI2 Master 0 WS Write [Enabled]	Item Help		
PCI2 Master 0 WS Write [Enabled] PCI1 Post Write [Enabled] PCI2 Post Write [Enabled] PCI Delay Transaction [Enabled]	Menu Level ▶▶		

▶ CPU & PCI Bus Control

PCI1/2 Master 0 WS Write: When Enabled, Writes to the PCI bus are commanded with zero wait states.

The Choice: Enabled, Disabled.

PCI Delay Transaction: The chipset has an embedded 32-bit posted write buffer to support delay transactions cycles. Select Enabled to support compliance with PCI specification version 2.1.

The Choice: Enabled, Disabled.

Memory Hole: You can reserve this memory area for the use of ISA adaptor ROMs. The default is Disabled.

Enabled: This field enables the main memory (15~16MB) to remap to ISA BUS.

Disabled: Normal Setting.

Note: If this feature is enabled you will not be able to cache this memory segment.

System BIOS Cacheable: This allows you to copy your BIOS code from slow ROM to fast RAM. The default is Disabled.

Enabled: The option will improve system performance. However, if any program

writes to this memory area, a system error may result.

Disabled: System BIOS non-cacheable.

Video RAM Cacheable: This option allows the CPU to cache read/writes of the video RAM. The default is Enabled.

Enabled: This option allows for faster video access.

Disabled: Reduced video performance.

4-4 Integrated Peripherals

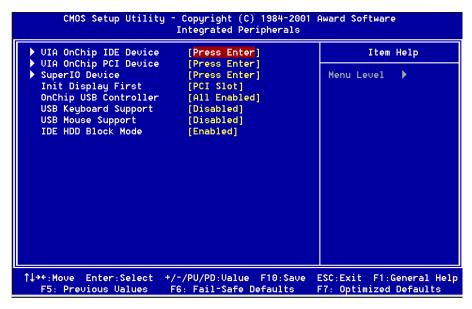


Figure 5: Integrated Peripherals

Note: If you do not use the Onboard IDE connector, then you will need to set Onboard Primary PCI IDE: Disabled and Onboard Secondary PCI IDE: Disabled Note: The Onboard PCI IDE cable should be equal to or less than 18 inches (45).

cm.).

▶ VIA OnChip IDE Device

CMOS Setup Utility – Copyright (C) 1984–2001 Award Software UIA OnChip IDE Device				
OnChip IDE Channel0 OnChip IDE Channel1	[Enabled] [Enabled]	Item Help		
IDE Prefetch Mode	[Enabled]	Menu Level		
Primary Master PIO Primary Slave PIO	[Auto] [Auto]			
Secondary Master PIO	[Auto]			
Secondary Slave PIO Primary Master UDMA	[Auto] [Auto]			
Primary Slave UDMA	[Auto]			
Secondary Master UDMA Secondary Slave UDMA	[Auto] [Auto]			
CDROM UDMA Support	[Disabled]			

OnChip IDE Channel0/1: The default value is Enabled.

The integrated peripheral controller contains an IDE interface with support for two IDE channels. Select *Enabled* to activate each channel separately.

The choice: Enabled, Disabled.

IDE Prefetch Mode: Enable prefetching for IDE drive interfaces that support its faster drive accesses. If you are getting disk drive errors, change the setting to omit the drive interface where the errors occur. Depending on the configuration

of your IDE subsystem, this field may not appear, and it does not appear when the Internal PCI/IDE field, above, is Disabled.

The Choice: Enabled, Disabled.

Primary/Secondary Master/Slave PIO: The default is Auto.

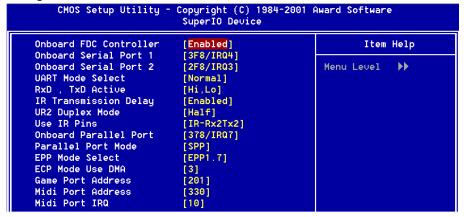
The four IDE PIO (Programmed Input/Output) fields let you set a PIO mode (0-4) for each of the four IDE devices that the onboard IDE interface supports. Modes 0 through 4 provide successively increased performance. In Auto mode, the system automatically determines the best mode for each device.

The choice: Auto, Mode 0, Mode 1, Mode 2, Mode 3, Mode 4.

Primary/Secondary Master/Slave UDMA: This allows you to select the mode of operation for the Ultra DMA/33/66/100/133 implementation is possible only if your IDE hard drive supports it and the operating environment includes a DMA driver (Windows 95 OSR2 or a third-party IDE bus master driver). If your hard drive and your system software both support Ultra DMA/33/66/100/133, select Auto to enable UDMA mode by BIOS or you can select mode by manual.

The Choice: Auto, Disabled, UDMA33, UDMA66, UDMA100, UDMA133.

CDROM UDMA Support: This allows you to select the mode of operation for the CDROM implementation is possible only if your CDROM drive supports it and the operating environment includes a DMA driver (Windows 95 OSR2 or a third-party IDE bus master driver).


The Choice: Enabled, Disabled.

▶ VIA OnChip PCI Device

```
CMOS Setup Utility - Copyright (C) 1984-2001 Award Software
Onboard PCI Device
UIA-3058 AC97 Audio [Auto] Item Help
```

VIA-3058 AC97 Audio: This item allows you to decide to Auto/disable the chipset family to support AC97 Audio. The function setting AC97 Audio Codec states. The system default is Auto.

▶ Super IO Device

Onboard FDC Controller: Select Enabled if your system has a floppy disk controller (FDC) installed on the system board and you wish to use it. If you install and-in FDC or the system has no floppy drive, select Disabled in this field. The choice: Enabled, Disabled.

Onboard Serial Port 1/2: Select an address and corresponding interrupt for the first and second serial ports.

The choice: 3F8/IRQ4, 2E8/IRQ3, 3E8/IRQ4, 2F8/IRQ3, Disabled, Auto.

UART Mode Select: This filed allows the users to configure what IR mode the 2nd serial port should use. The default is Normal.

The choice: Normal, IrDA and ASKIR.

RxD, TxD Active: This field configures the receive and transmit signals generated from the IR port. The default is Hi Lo (when UART Mode Select is not set to Normal).

The choice: Hi Hi, Hi Lo, Lo Hi, and Lo Lo.

IR Transmission delay: This item allows you to enabled/disable IR transmission delay.

The choice: Enabled, Disabled.

UR2 Duplex Mode: This item allows you to select IR half/full duplex

function.

The choice: Half, Full.

Use IR Pins: This item allows you to select IR transmission routes, one is

RxD2, TxD2 (COM Port) and the other is IR-Rx2Tx2.

The choice: IR-Rx2Tx2, RxD2, TxD2.

Onboard Parallel port: This field allows the user to configure the LPT port.

The choice: 378/IRQ7, 278/IRQ5, 3BC/IRQ7, Disabled.

Parallel Port Mode: This field allows the user to select the parallel port mode.

The choice: SPP, EPP, ECP, ECP+EPP.

EPP Mode Select: This item allows you to determine the IR transfer mode of

onboard I/O chip.

The Choice: EPP1.9, EPP1.7.

ECP Mode USE DMA: This field allows the user to select DMA1 or DMA3 for the

ECP mode.

The Choice: DMA1, DMA3.

Game Port Address: Select an address for the Game port.

The choice: 201, 209, Disabled.

Midi Port Address: Select an address for the Midi port.

The choice: 290, 300, 330, Disabled.

Midi Port IRQ

Select an interrupt for the Midi port.

The choice: 5, 10.

BIOS

Init Display First: If two video cards are used (1 AGP and 1 PCI) this specifies which one will be the primary display adapter. The default is PCI Slot.

PCI Slots: PCI video card will be primary adapter.

AGP: AGP video card will be primary adapter.

OnChip USB Controller: USB Controller (Port1)(Port2)(Port3).

The Choice: All Disabled, All Enabled, 1&2 USB Port, 2&3 USB Port, 1&3 USB Port, 1 Port, 2 Port, 3 Port.

USB Keyboard/Mouse Support: Select Enabled if your system contains a Universal Serial Bus (USB) controller and you have a USB/Mouse keyboard. The Choice: Enabled, Disabled.

IDE HDD Block Mode: IDE Block Mode allows the controller to access blocks of sectors rather than a single sector at a time. The default is Enabled.

Enabled: Enabled IDE HDD Block Mode. Provides higher HDD transfer rates.

Disabled: Disable IDE HDD Block Mode.

4-5 Power Management Setup

Choose the "POWER MANAGEMENT SETUP" in the CMOS SETUP UTILITY to display the following screen. This menu allows the user to modify the power management parameters and IRQ signals. In general, these parameters should not be changed unless it's absolutely necessary.

```
CMOS Setup Utility - Copyright (C) 1984-2001 Award Software
                          Power Management Setup
  ACPI function
                             [Enabled]
                                                              Item Help
  ACPI Suspend Type
                             [$1(PO$)]
  Power Management Option
                             [User Define]
                                                       Menu Level
  HDD Power Down
                             [Disable]
  Suspend Mode
                             [Disable]
  Video Off Option
                             [Suspend -> Off]
  Video Off Method
                             [U/H SYNC+Blank]
  MODEM Use IRQ
                             [3]
  Soft-Off by PWRBTN
                             [Instant-Off]
   State After Power Failure [Off]
▶ IRQ/Event Activity Detect [Press Enter]
†1→+:Move
                         +/-/PU/PD:Value F10:Save
                                                     ESC:Exit
          Enter:Select
                                                               F1:General Help
  F5: Previous Values
                          F6: Fail-Safe Defaults
                                                     F7: Optimized Defaults
```

Figure 6: Power Management Setup

ACPI Function: This option allows you to select ACPI Function.

The default is Enabled.

The Choice: Enabled, Disabled.

ACPI Suspend Type: This item allows you to select S1(POS) or S3(STR) function. The choice: S1(POS), S3(STR).

Power Management Option: Use this to select your Power Management selection. The default is User define.

Max. saving: Maximum power savings. Inactivity period is 1 minute in each mode.Min. saving: Minimum power savings. Inactivity period is 1 hour in each mode.User define: Allows user to define PM Timers parameters to control power

saving mode.

HDD Power Down: When enabled and after the set time of system inactivity, the hard disk drive will be powered down while all other devices remain active. The choice: Enabled, Disabled.

Suspend Mode: When enabled and after the set time of system inactivity, all devices except the CPU will be shut off.

The choice: Enabled, Disabled.

Video Off Option: Tells you what time frame that the video will be disabled under current power management settings. The default is Suspend->Off.

Always On: Video power off not controlled by power management.

Suspend->Off: Video powers off after time shown in suspend mode setting.

Video Off Method: This option allows you to select how the video will be disabled by the power management. The default is V/H Sync + Blank

V/H Sync + Blank: System turns off vertical and horizontal synchronization ports

and writes blanks to the video buffer.

DPMS Support: Select this option if your monitor supports the Display Power

Management Signaling (DPMS) standard of the Video

Electronics Standards Association (VESA). Use the software supplied for your video subsystem to select video power

management values.

Blank Screen: System only writes blanks to the video buffer.

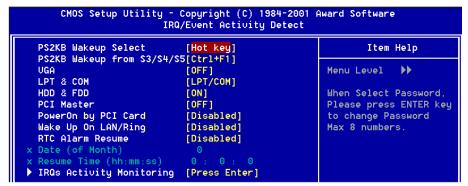
MODEM Use IRQ: Name the interrupt request (IRQ) line assigned to the modem (if any) on your system. Activity of the selected IRQ always awakens the system. Default is IRQ 3.

The Choice: N/A, 3, 4, 5, 7, 9, 10, 11

Soft-Off by PWRBTN: Use this to select your soft-off function.

The default is Instant Off.

Instant Off: Turns off the system instantly.


Delay 4 Second: Turns off the system after a 4 second delay. If momentary

press of button, the system will go into Suspend Mode. Press

the power botton again to make system back to work.

State After Power Failure: This field lets you determine the state that your PC returns to after a power failure. If set to OFF, the PC will not boot after a power failure, if set to ON, the PC will restart after a power failure.

▶ IRQ/Event Activity Dectect

PS2KB Wakeup Select: This item allows you to select Hot Key or Password to wake-up the system by PS2 Keyboard. When select Password, please press ENTER key to change password max 8 numbers.

PS2KB Wakeup form S3/S4/S5: This item allows you to set a Hot Key to wakeup the system by PS2 Keyboard.

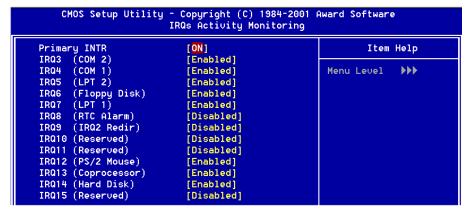
The choice: Disabled, Ctrl+F1, Ctrl+F2, Ctrl+F3, Ctrl+F4, Ctrl+F5, Ctrl+F6, Ctrl+F7, Ctrl+F8, Ctrl+F9, Ctrl+F10, Ctrl+F11, Ctrl+F12, Power, Wake, Any key.

Note: Power and Wake are Windows98 Keyboard button.

VGA: When set to *On*, any event occurring at a VGA port will awaken a system which has been powered down.

LPT & COM: When set to *LPT/COM*, any event occurring at a COM(serial)/LPT (printer) port will awaken a system which has been powered down.

HDD & FDD: When set to *On*, any event occurring at a hard or floppy drive port will awaken a system which has been powered down.


PCI Master: When set to *Off*, any event occurring to the DMA controller will awaken a system which has been powered down.

PowerOn by PCI Card: An input signal form PME on the PCI card awakens the system from a soft off state.

Modem Ring/LAN Resume: When set to *Enabled*, any event occurring to the Modem Ring / LAN will awaken a system which has been powered down.

RTC Alarm Resume: When set to *Enable rtc alarm resume*, you could set the date (of month) and timer (hh:mm:ss), any event occurring at will awaken a system which has been powered down.

▶ IRQs Activity Monitoring

Primary INTR: When set to *On* (default), any event occurring at will awaken a system which has been powered down.

IRQs 3-15: Allows you to set system to monitor IRQs 3-15 for activity to awaken system form a power managerment mode.

4-6 PNP/PCI Configuration

The PNP/PCI configuration program is for the user to modify the PCI/ISA IRQ signals when various PCI/ISA cards are inserted in the PCI or ISA slots.

WARNING: Conflicting IRQ's may cause the system to not find certain devices.

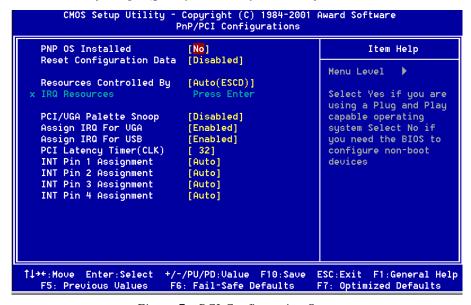


Figure 7: PCI Configuration Setup

PNP OS Installed: Do you have a PNP OS installed on your system. The default is No.

Reset Configuration Data: This setting allows you to clear ESCD data.

The default is Disabled **Disabled**: Normal Setting.

Enabled: If you have plugged in some Legacy cards to the system and they were

recorded into ESCD (Extended System Configuration Data), you can

set this field to Enabled in order to clear ESCD.

Resources Controlled By: Who controlled the system PNP/PCI resources. The default is Auto.

BIOS

Manual: PNP Card's resources will be controlled manually. You can set which

IRQ-X and DMA-X are assigned to PCI/ISA PNP or Legacy ISA Cards.

Auto: If your ISA card and PCI card are all PNP cards, BIOS will assign the

interrupt resource automatically.

PCI/VGA Palette Snoop: Leave this field at Disabled.

The choice: Enabled, Disabled.

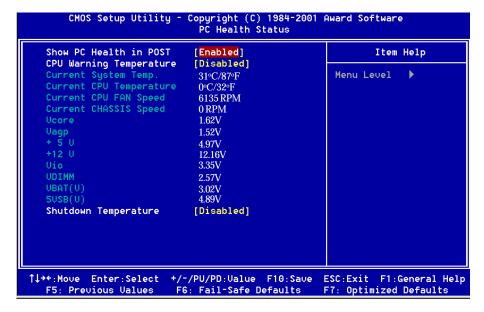
Assign IRQ For VGA/USB: This item allows BIOS to assign whether IRQ is with VGA/USB or not. If you have not connect the VGA/USB device. Can release the IRO for other device. The default is Enabled.

Enabled: Provides IRQ for VGA/USB device.

Disabled: Release IRQ for other device.

PCI Latency Timer (CLK): The latency timer defines the minimum amount of time, in PCI clock cycles, that the bus master can retain the ownership of the bus. The Choice: 0-255.

INT Pin1 to Pin4 Assignment: These settings allow the user to specify what IRQ will be assigned to PCI devices in the chosen slot. Options available: Auto,3,4,5,7,9, 10,11,12,14 & 15. The defaults are Auto.


Interrupt request are shared as shown the table below:

	INT A	INT B	INT C	INT D
PCI 1	V			
PCI 2		v		
PCI 3			V	
PCI 4				V
PCI 5			V	
AGP Slot	V			
AC97/MC97			V	
Onboard USB1				V
Onboard USB2				V

IMPORTANT!

If using PCI cards on shared slots, make sure that the drivers support "Shared IRQ" or that the cards don't need IRQ assignments. Conflicts will arise between the two PCI groups that will make the system unstable or cards inoperable.

4-7 PC Health Status

Show PC Health in POST: When enable this function, you can see PC Health in Post screen.

CPU Warning Temperature: This is the temperature that the computer will respond to an overheating CPU. The default is Disabled.

The Choice: Disabled, 50°C/122°F, 53°C/127°F, 56°C/133°F, 60°C/140°F,63°C/145°F, 66°C/151°F, 70°C/158°F.

Current System Temperature: This is the Current temperature of the system.

Current CPU Temperature: This is the Current temperature of the CPU.

Current CPU/Chassis FAN Speed: The current CPU/Chassis fan speed in RPMs.

Vcore: The voltage level of the CPU(Vcore).

Vagp: The voltage level of Power supplied to AGP card.

1.52V: for 4X AGP card. 3.3V: for 2X AGP card.

BIOS

5V, **12V**, **VBAT**(**V**), **5VSB**(**V**): The voltage level of the switch power supply.

Vio: The voltage level of the CPU Vio.

VDIMM: The voltage level of the DRAM.

Shutdown Temperature: This is the temperature that the computer will turn off the power to combat the effects of an overheating system. (requires ACPI to be enabled in Power Management BIOS and ACPI compliant operating system.) The default is Disabled.

Options available are 60°C/140°F to 75°C/167°F in increments of 5°C.

4-8 Frequency/Voltage Control

```
CMOS Setup Utility - Copyright (C) 1984-2001 Award Software
                         Frequency/Voltage Control
  Auto Detect DIMM/PCI Clk
                             [Enabled]
                                                               Item Help
  Spread Spectrum
                              [Disabled]
                                                       Menu Level
  CPU Clock
                             [100]
  CPU Ratio
                              [Auto]
                               1.75 V
         Current Voltage
                             [Default]
                               1.75 V
  DIMM Default Voltage
                               2.50 U
             Add Voltage
                             [+0.00 U]
             New Voltage
                               2.50 V
   AGP Default Voltage
                               1.50 U
             Add Voltage
                             [+0.00 U1
            New Uoltage
                               1.50 V
                                                     ESC:Exit
îl→+:Move
           Enter:Select
                         +/-/PU/PD:Value
                                           F10:Save
                                                               F1:General Help
  F5: Previous Values
                          F6: Fail-Safe Defaults
                                                     F7: Optimized Defaults
```

Auto Detect DIMM/PCI Clk: When enabled the motherboard will automatically disable the clock source for a DIMM socket which does not have a module in it. Same applies for PCI slots. This setting will reduce the EMI. The default is Enabled.

Spread Spectrum: This item allows you to enable/disable the spread spectrum modulate.

CPU Clock: The mainboard is designed to set the CPU clock via BIOS. This item allows you to adjust CPU clock 1MHz by step.

Note: Overclocking failure will cause system No display problem. At this moment, please press "Insert" key to back to the initial or default setting to boot up your system.

CPU Ratio: This item allows you to select the CPU ratio. If the CPU ratio is fixed. This item was no function. The choice: Auto, [x6]...[x15].

BIOS

CPU Vcore Voltage: This item allows you to increase the CPU Vcore Voltage.

The option: Default, $\pm 0.025V$ increment.

DIMM Voltage: This item allows you to increase the DIMM Voltage.

The option: +0.1V increment.

AGP Voltage: This item allows you to increase the AGP Voltage. (Applicable

when you plug in AGP card).

The option: +0.1V increment.

4-9 Defaults Menu

Selecting "Defaults" from the main menu shows you two options which are described below

Load Fail-Safe Defaults

When you press <Enter> on this item you get a confirmation dialog box with a message similar to:

Load Fail-Safe Defaults (Y/N)? N

Pressing 'Y' loads the BIOS default values for the most stable, minimal-performance system operations.

Load Optimized Defaults

When you press <Enter> on this item you get a confirmation dialog box with a message similar to:

Load Optimized Defaults (Y/N)? N

Pressing 'Y' loads the default values that are factory settings for optimal performance system operations.

4-10 Supervisor/User Password Setting

You can set either supervisor or user password, or both of then. The differences between are:

supervisor password: can enter and change the options of the setup menus.
user password: just can only enter but do not have the right to change the options of the setup menus. When you select this function, the following message will appear at the center of the screen to assist you in creating a password.

ENTER PASSWORD:

Type the password, up to eight characters in length, and press <Enter>. The password typed now will clear any previously entered password from CMOS memory. You will be asked to confirm the password. Type the password again and press <Enter>. You may also press <Esc> to abort the selection and not enter a password. To disable a password, just press <Enter> when you are prompted to enter the password. A message will confirm the password will be disabled. Once the password is disabled, the system will boot and you can enter Setup freely.

PASSWORD DISABLED.

When a password has been enabled, you will be prompted to enter it every time you try to enter Setup. This prevents an unauthorized person from changing any part of your system configuration.

Additionally, when a password is enabled, you can also require the BIOS to request a password every time your system is rebooted. This would prevent unauthorized use of your computer.

You determine when the password is required within the BIOS Features Setup Menu and its Security option. If the Security option is set to "System", the password will be required both at boot and at entry to Setup. If set to "Setup", prompting only occurs when trying to enter Setup.

4-11 Exit Selecting

Save & Exit Setup

Pressing <Enter> on this item asks for confirmation:

Save to CMOS and EXIT (Y/N)? Y

Pressing "Y" stores the selections made in the menus in CMOS – a special section of memory that stays on after you turn your system off. The next time you boot your computer, the BIOS configures your system according to the Setup selections stored in CMOS. After saving the values the system is restarted again.

Exit Without Saving

Pressing <Enter> on this item asks for confirmation:

Quit without saving (Y/N)? Y

This allows you to exit Setup without storing in CMOS any change. The previous selections remain in effect. This exits the Setup utility and restarts your computer.

Page Left Blank

Section 5 Driver Installation

Easy Driver Installation

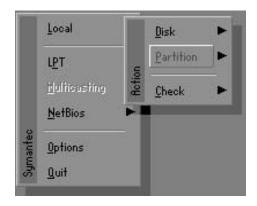
Insert the bundled autorun driver CD-disk.

- **Step 1 :** Click "**SERVICE PACK 4IN1 DRIVER**". Install all components recommended.
- **Step 2:** Click "AC'97 ALC201A AUDIO DRIVER" to install Audio Sound Driver.
- **Step 3:** Click "BUS MASTER" to install BusMaster PCI IDE. (For performance only).
- Step 4: Click "USB DRIVER" to install USB Driver.

D	riv	ers	Ins	stal	lati	ion
_		\mathbf{c}	111	Jiai	ıaı	

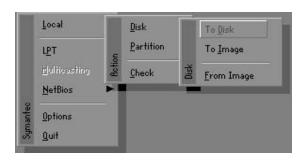
Page Left Blank

Appendix A


A-1 GHOST 5.1/6.03 Quick User's Guide (Optional)

Installation is very easy. You only need to copy the **Ghost5** folder or **Ghost.exe** to your hard disk.

The current market version is for single **Client**, so the LPT and NetBios portions will not be explained further.


Description of Menus

Ghost clones and backs up Disk and Partition.

In which **Disk** indicates hard disk options **Partition** indicates partition options **Check** indicates check options

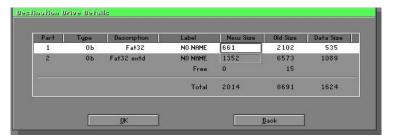
Disk

Appendix

There are 3 hard disk functions:

- 1. Disk To Disk (disk cloning)
- 2. Disk To Image (disk backup)
- 3. Disk From Image (restore backup)

Important!

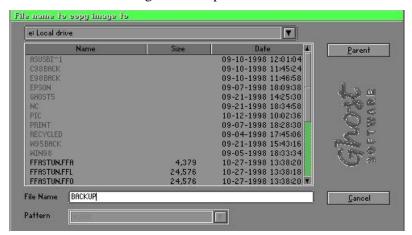

- 1. To use this function, the system must have at least 2 disks. Press the **Tab** key to move the cursor.
- 2. When restoring to a destination disk, all data in that disk will be completely destroyed.

Disk To Disk (Disk Cloning)


- 1. Select the location of the **Source drive**.
- 2. Select the location of the **Destination drive**.

3. When cloning a disk or restoring the backup, set the required partition size as shown in the following figure.

4. Click OK to display the following confirmation screen. Select **Yes** to start



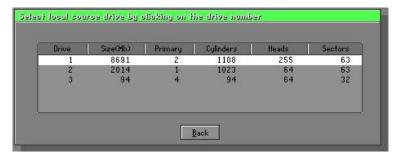
Disk To Image (Disk Backup)

1. Select the location of the Source drive.

2. Select the location for storing the backup file.

Appendix

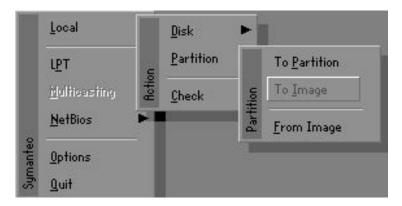
3. Click **OK** to display the following confirmation screen. Select **Yes** to start



Disk From Image (Restore Backup)

1. Select the Restore file.

2. Select the **Destination drive** of the disk to be restored.


3. When restoring disk backup, set the required partition size as shown in the following figure.

4. Click **OK** to display the following confirmation screen. Select **Yes** to start.

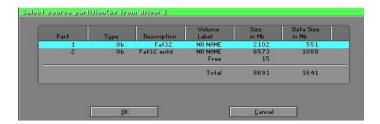
Partition

Appendix

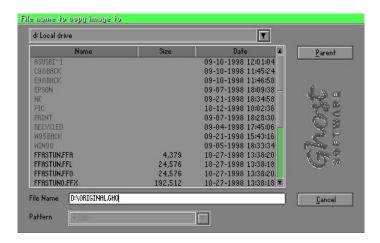
There are 3 partition functions:

- 1. Partition To Partition (partition cloning)
- **2. Partition To Image** (partition backup)
- **3. Partition From Image** (restore partition)

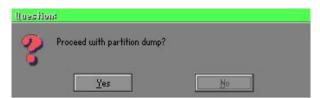
Partition To Partition (Partition Cloning)


The basic unit for partition cloning is a partition. Refer to disk cloning for the operation method.

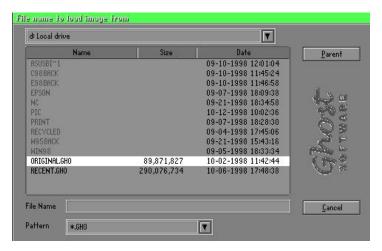
Partition To Image (Partition Backup)


1. Select the disk to be backed up.

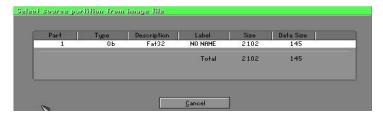
2. Select the first partition to be backed up. This is usually where the operating system and programs are stored.


3. Select the path and file name for storing the backup file.

- 4. Is the file compressed? There are 3 options:
 - (1) No: do not compress data during backup
 - (2) Fast: Small volume compression
 - (3) High: high ratio compression. File can be compressed to its minimum, but this requires longer execution time.



5. During confirmation, select Yes to start performing backup.



Partition From Image (Restore Partition)

1. Select the backup file to be restored.


2. Select the source partition.

3. Select the disk to be restored.

4. Select the partition to be restored.

5. Select Yes to start restoring.

Check

This function checks the hard disk or backup file for backup or restoration error due to FAT or track error.

How to Reinstall Windows in 2 Minutes

This chapter teaches you how to set your computer properly and, if necessary, reinstall Windows in 2 minutes. Ghost can use different methods to complete this task. The following two sections explain the creation of the emergency Recover Floppy and Recover CD:

Emergency Recover Floppy

Divide a hard disk into two partitions. The first partition is for storing the operating system and application programs. The second partition is for backing up the operating system and data. The size of the partition can be set according to the backup requirements. For example, the **Windows** operating system needs 200MB of hard disk space, while the complete **Office** installation requires 360MB. The remaining space can be used to store other data.

After installing **Windows**, use **Ghost** to create a backup of the source system and store the file (Image file) in drive D. The file is named as **Original.gho**. Then, create a recover floppy disk containing:

- Bootable files (Command.com, Io.sys, and MSDOS.SYS)
- Config.sys (configuration setup file)
- Autoexec.bat (auto-execution batch file)
- Ghost.exe (Ghost execution file)

There are two ways to set the content of the recover floppy for restoration:

(1) To load **Windows** automatically after booting, set the **Autoexec.bat** command as:

Ghost.exe clone, mode=pload, src=d:\original.gho:2,dst=1:1 -fx -sure -rb

Description: Runs the restore function automatically using the Image File. After execution, it exits Ghost and boots the system automatically.

Refer to the [Introducing Ghosts Functions].

(2) After booting, the screen displays the Menu. Select Backup or Restore: Since the user may install other applications in the future, he/she may design **Autoexec.bat** as a Menu to back up or restore the userdefined Image file as follows:

Backup

Back up Windows and application programs as a file (Recent. gho). Command is:

Ghost -clone,mode=pdump,src=1:1,dst=d:\Recent.gho -fx - sure -rb

Restore

Restore types include [General Windows] and [Windows and Application Programs]. If you select [General Windows], the system is restored to the general Windows operation condition. The command is:

Ghost.exe -clone,mode=pload,src=d:\Original.gho,dst=1:1 -fx -sure -rb

If you select [Windows and Application Programs], the latest backup file (Recent.gho) is restored, skipping the installation and setup of application programs.

For description of relevant parameters, refer to [Introducing Ghosts Functions].

For more information about menu design, refer to Config.sys and Autoexec.bat under /Menu in the CD. You can also create a backup CD containing Ghost.exe and these two files.

Recover CD

In recent years, well-known computer manufacturers (such as IBM, Acer, Compaq, etc.) bundle Recover CDs with their computers to reduce the cost resulting from servicing, while at the same time increasing their market competitiveness.

The following is a simple guide to how to create a recover CD:

 For extremely easy creation of the recover floppy disk, use the copy program for example "Easy CD Creator" (Note 2). First, create a recover floppy disk containing:

Bootable files (Command.com and Io.sys and MSDOS.SYS)

Config.sys (Configuration setup file)

Autoexec.bat (Auto-execution batch file)

Mscdex.exe (CD-Rom execution file)

Ghost.exe (Ghost execution file)

Oakcdrom.sys (ATAPI CD-ROM compatible driver)

The content of Config.sys is:

DEVICE=Oakcdrom.sys /d:idecd001

The content of Autoexec.bat includes:

MSCDEX.EXE /D:IDECD001 /L:Z

Ghost.exe clone,mode=load,src=z:\original.gho,dst=1 -sure -rb

2. Write the backup image file (original.gho) of the entire hard disk or partition into the recover CD. Use the Recover CD to boot up the system and restore the backup files automatically.

For description of relevant parameters, refer to [Introducing Ghosts Functions].

Note: For more details regarding the creation program and method for creating the recover CD, please refer to the legal software and relevant operation manual.

Ghost Command Line Switches Reference

Ghost may be run in interactive or in batch mode. Batch mode is useful for automating installations for backups using Ghost. Most of the Ghost switches are used to assist with batch mode operation. To list switches from Ghost, type ghost.exe -h.

-clone

The full syntax for this switch is:

```
\label{eq:copy} $$ $$ clone, MODE={copy|load|dump|pcopy|pload|pdump}, SRC= $$ $ \{drive|file|drive:partition|, DST={drive|file|drive:partition}, SZE{F|L|n=\{nnnnM|nnP|F|V\}} $$
```

Clone using arguments. This is the most useful of the batch switches and has a series of arguments that define:

a) **MODE** This defines the type of clone command to be used:

COPY disk to disk copy
LOAD file to disk load
DUMP disk to file dump

PCOPY partition to partition copy

PLOAD file to partition loadPDUMP partition to file dump

b) SRC This defines the source location for the operation:

Mode Meaning:

COPY/

DUMP Source drive (e.g, 1 for drive one)

LOAD Disk image filename or device (e.g, g:\Images\system2.img)

PCOPY/

PDUMP Source partition e.g, 1:2 indicates the second partition

on drive one.

PLOAD Partition image filename or device and partition

number. Example: g:\images\disk1.img:2 indicates the

second partition in the Image file.

c) DST This defines the destination location for the operation:

Mode Meaning

COPY/

LOAD Destination drive (e.g, 2 for drive two)

DUMP Disk image filename or device,(e.g, g:\images\system2.img)

PCOPY/

PLOAD Destination partition,(e.g, 2:2 indicates the second partition on drive two).

PDUMP Partition image filename (e.g, g:\images\part1.img).

d) SZEy Used to set the size of the destination partitions for either a disk load or disk copy operation.

Available y Options:

F Resizes the first partition to maximum size allowed based on file system t type.

L Resizes the last partition to maximum size allowed based on file system type.

n=xxxxM - indicates that the n?h destination partition is to have a size of xxxx Mb. (e.g., SZE2=800M indicates partition two is to

have 800 mb.) n=mmP - indicates that the n?h destination partition is to have a size of mm percent of the target disk.

n=F - indicates that the n?h destination partition is to remain fixed in size.

n=V - Indicates that the partition will be resized according to the following rules:

Rule 1 - If the destination disk is larger than the original source disk, then the partition(s) will be expanded to have the maximum amount of space subject to the free space available and the partition type (e.g, FAT16 partitions will have a maximum size of 2048Mb.)

Rule 2 - If the destination disk is smaller than the original source disk, (but still large enough to accommodate the data from the source disk), the free space left over after the

data space has been satisfied will be distributed between the destination partitions in proportion to the data usage in the source partitions Someexamples follow that will help illustrate:

-fx

flag Exit. Normally when Ghost has finished copying a new system to a disk, it prompts the user to reboot with a press Ctrl-Alt-Del to reboot window. However, if Ghost is being run as part of a batch file it is sometimes useful to have it just exist back to the DOS prompt after completion so that further batch commands may be processed. -fx enables this. See -rb for another option on completing a clone.

-ia

Image All. The Image All switch forces Ghost to do a sector by sector copy of all partitions. When copying a partition from a disk to an image file or to another disk, Ghost examines the source partition and decides whether to copy just the files and directory structure, or to do an image (sector by sector) copy. If it understands the internal format of the partition it defaults to copying the files and directory structure. Generally this is the best option, but occasionally if a disk has been set up with special hidden security files that are in specific positions on the partition , the only way to reproduce them accurately on the target partition is via an image or sector-by-sector copy.

-span

enables spanning across volumes.

-split=x

splits image file into 'x' Mb? Mb spans. Use this to create a 'forced' size volume set. For example, if you would like to force smaller image files from a 1024 Megabyte drive, you could specify 200 megabyte segments. For example, ghost. exe-split=200 will divide the image into 200 Megabyte segments.

-sure

use the -sure switch in conjunction with -clone to avoid being prompted with the final 'Proceed with disk clone destination drive will be overwritten?' question. This command is useful in batch mode.

Appendix

Example 1:

To copy drive one to drive two on a PC, without final prompt if OK to proceed.

ghost.exe -clone,mode=copy,src=1,dst=2 -sure

Example 2:

To connect via NetBIOS to another PC running Ghost in slave mode, and dump a disk image of local drive two to the remote file c:\drive2.gho ghost.exe -clone,mode=dump,src=2,dst=C:\drive2.gho -nbm

Note: The slave Ghost can be started with ghost –nbs

Example 3:

To copy drive one, second partition on a PC to drive two, first partition the same PC, without final prompt ghost.exe -clone,mode=pcopy,src=1:2,dst=2:1 -sure

Example 4:

To dump the second partition of drive one to an image file on a mapped drive g:

ghost.exe -clone,mode=pdump,src=1:2,dst=g:\part2.gho

Example 5:

To load partition 2 from a two-partition image file on a mapped drive g: onto the second partition of the local disk ghost -clone,mode=pload,src=g:\part2.gho:2,dst=1:2

Example 6:

To load drive 2 from an image file and resize the destination partitions into a 20:40 allocation

ghost.exe -clone,mode=load,src=g:\2prtdisk.gho,dst=2,sze1=60P, sze2=40P

Appendix B

B-1 Update Your system BIOS

Download the xxxxx.EXE file corresponding to your model form the our website to an empty directory on your hard disk or floppy. Run the downloaded xxxxx.EXE file and it will self extract. Copy these extracted files to a bootable DOS floppy disk.

Note: The DOS floppy disk should contain NO device drivers or other programs.

- 1. Type "A:\AWDFLASH and press <Enter> Key.
- 2. You will see the following setup on screen.
- 3. Please key in the xxxxx.bin BIOS file name.

```
C)Award Software 2000 All Rights Reserved

For XXXX -W83627-6A69LPA9C-0 DATE: 05/11/2000

Flash Type -

File Name to Program :
```

4. If you want to save the previous BIOS data to the diskette, please key in [Y], otherwise please key in [N].

```
(C)Award Software 2000 All Rights Reserved

For XXXX-W83627-6A69LPA9C-0 DATE: 05/11/2000
Flash Type - XXXXX E82802AB /3.3V

File Name to Program : XXXXX.bin

Error Message: Do You Want To Save Bios (Y/N)
```

5. Key in File Name to save previous BIOS to file.

```
(C)Award Software 2000 All Rights Reserved

For XXXX-W83627-6A69LPA9C-0 DATE: 05/11/2000 Flash Type - XXXXX E8280ZAB /3.3V

File Name to Program : XXXXX.bin

File Name to Save : XXXXX.bin
```

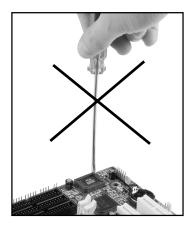
6. Are you sure to program (y/n), please key in [Y] to start the programming.

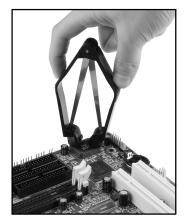
```
FLASH MEMORY WRITER V7.88

(C)Award Software 2000 All Rights Reserved

For XXXX-W83627-6A69LPA9C-0 DATE: 05/11/2000 Flash Type - XXXXX E8280ZAB /3.3V

File Name to Program : XXXXX.bin Checksum : 9385H

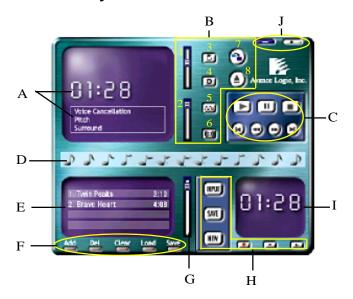

File Name to Save : XXXXX.bin XXXXX.bin Error Message: Are you sure to program (y/n)
```


7. The programming is finished.

Appendix C

C-1 EEPROM BIOS Remover

Do not remove the BIOS chip, unless instructed by a technician and only with a PLCC IC extractor tool.


The BIOS socket may be damaged if using an improper method to replace the BIOS chip.

Page Left Blank

Appendix D

D-1 Avance® Media Player User's Guide

Avance® Media Player Platform

Functional Descriptions

A. Playback Windows Display

Playback windows displays the following mode information:

- 1. Playback Time Display
- 2. Voice Cancellation Mode Display
- 3. Pitch Mode Display
- 4. Surround Sound Mode Display

B. Playback Function Controls

There are 8 selectable functions for the playback:

- 1. Volume control High/Low Adjustment Bar.
- 2. Pitch control 4-step High/Low Adjustment Bar.

Appendix

3. Repeat mode Choice of Repeat, All Repeat, Random or No

Repeat Mode.

4. Mute On/Off Mode select.

5. Voice cancellation Voice Cancellation On/Off Mode select for

Karaoke.

6. Surround mode A total of 26 Surround Sound mode select as

shown in the table below.

Surround mode	Surround mode	
Surround mode	Surround mode	
Generic	Stone corridor	
Padded	Alley	
Room	Forrest	
Bathroom	City	
Living room	Mountain	
Stone	Quarry	
Auditorium	Plain	
Concert	Parking lot	
Cave	Sewer pipe	
Arena	Under water	
Hangar	Drug	
Carpet	Dizzy	
Hallway	Psychological	

7. Skin change Media Player Skin Type select.

8. Open Open file formats including MP3, CDA, MDI, WAV

& WMA support.

C. Playback Controls

The playback controls include "Play", "Pause", "Stop", "Previous", "Backward", "Forward", & "Next".

D. Seeking bar

Display Animated Playback Status

E. Title/Play List Windows

Display Currently Selected Title(s)

F. Title/Play List Edit Controls

There title/play list controls include "Add", "Del", "Clear", "Load", & "Store".

1. Add Add to the Title/Play List.

2. Del Remove form the Title/Play List.

3. Clear the Title/Play Lost.

4. Load Load Title/Play List.

5. Store Save Title/Play List.

G. Title/Play List Scroll bar

Scroll Up/Down the Title/Play List.

H. Recording Function Controls

The recording function controls include "Input", "Save:, "New", "Rec", "Stop",

& "Play".

1. Input Input soruce select.

2. Save Save to file.

3. New Open new file & select format includes Sampling

Rate, Sampling bit, Mono or Stereo.

4. Rec Start Rec.
 5. Stop Stop Rec.

6. Play Playback Rec file.

I. REC/Playback Time Display

Displays REC/Playback Time.

J. Platform Display Panel Controls

The platform display panel control include "Minimize" & "Close".

1. Minimize Platform Display Panel.

2. Close Close/Exit Platform Display Panel.

Page Left Blank