

Notice to End Users

This User's Guide & Technical Reference is for assisting system manufacturers and end users in setting up and installing the mainboard.

Every effort has been made to ensure that the information in this manual is accurate. Soltek Computer Inc. is not responsible for printing or clerical errors. Information in this document is subject to change without notice and does not represent a commitment on the part of Soltek Computer Inc.

Companies and products mentioned in this manual are for identification purposes only. Product names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies.

SOLTECK COMPANY INC. PROVIDES THIS MANUAL "ASIS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SOLTEK COMPUTER INC. BE LIABLE FOR ANY LOSS OR PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, EVEN IF SOLTEK COMPUTER INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS MASNUAL OR PRODUCT.

(C)Copyright 1999 Soltek Computer Inc. All rights reserved

WebSite	://www.soltek.com.tw
E-Mail	:support@soltek.com.tw
Edition	:June 1999

Edition :June 1 Version :2.0

Model: SL - 55F5 / 55F1

C	Ω	NI	т	Г	N	Т
U	U	I	1	Ľ	1 N	1

CHAPTER 1 INTRODUCTION	4
FEATURES	
■ <i>CPU</i>	
Chipset	
\blacksquare L2 Cache	
■ Main Memory	
■ <i>BIOS</i>	5
■ Super I/O Function	5
■ Onboard built-in AC97 Digital Audio Controller	5
■ Onboard built-in VGA Controller	5
■ Other Functions	5
MAINBOARD LAYOUT	6
CHAPTER 2 HARDWARE SETUP	7
CPU SETTINGS	7
■ AMD K6-2 / K6-III CPUs Settings	7
■ Cvrix / IBM 6x86MX, MII CPUs Settings	8
■ IDT WinChip C6 /C6-2 CPUs Settings	
■ Intel Pentium / AMD K5 CPUs Settings	
■ Intel Pentium MMX CPUs Settings	
VCORE VOLTAGE SETTINGS - SW2	
CPU RATIO SETTINGS – SW2	14
CPU CLOCK SETTINGS – SW1	
JUMPER SETTINGS	17
■ JFAN 1~2: Onboard FAN (12V) Connector	17
■ JVIO: Single / Dual Voltage Select	17
■ JBAT1: Clear CMOS Data	17
■ JWOL1: Wake On LAN	17
■ JCD_IN1: CD-ROM Audio connector	17
■ CD_IN1: CD-ROM Audio connector	17
GAME / MIDI Port:	
MIC: Microphone Jack	
■ LINE IN: Audio in Jack	
■ LINE / SPEAKER OUT: Audio out Jack	
■ <i>RT2</i> : <i>Reserved</i>	
■ J1 Switch Signal Summary	
■ J2 Switch Signal Summary	
CONNECTORS	

SOFTWARE SETUP	
■ Onboard AC97 Audio Codec Driver Installation	
■ Onboard VGA Driver Installation	
CHAPTER 3 AWARD BIOS SETUP	23
STANDARD CMOS SETUP	24
BIOS FEATURES SETUP	
CHIPSET FEATURES SETUP	
POWER MANAGEMENT SETUP	
PNP/PCI CONFIGURATION SETUP	
LOAD SETUP DEFAULTS	
CPU SPEED SETTING	
INTEGRATED PERIPHERALS	
Supervisor/User Password	
IDE HDD AUTO DETECTION	43
SAVE & EXIT SETUP	
EXIT WITHOUT SAVING	43

Chapter 1

Introduction

Features

■ CPU

- 1. Supports Intel Pentium P54C/MMX (P55C) CPUs at 133 ~ 233 MHz
- 2. Supports Cyrix/IBM 6x86(L) CPUs at PR133+ ~ PR250+MHz and 6x86MX/MII CPUs at PR166+ ~ PR350+ MHz
- 3. Supports AMD K6-2 250 ~ 500Mhz and K6-III CPUs.
- 4. Supports IDT C6/C6-2 200 ~ 266MHz
- 5. Provides SOCKET 7 ZIF Socket
- 6. Supports 66/75/83/95/100/105/110/115/120/124 MHz CPU clock

Chipset

- 1. VIA VT8501 Apollo MVP4 chipset
- 2. PCI Rev 2.2, 5V, 33MHz interface compliant
- 3. AGP V2.0 compliant for 66(1X)/133(2X)MHz transfer modes
- 4. Onboard built-in AC97 Digital Controller
- 5. Onboard built-in VGA controller (share system memory)

L2 Cache

 Onboard supports 512K(55F5)/1MB(55F1) write back cache with Pipelined Burst SRAMs

Main Memory

- 1. Memory range from 8MB (minimum) to 768MB(SDRAM) (maximum) with DRAM Table Free configurations
- 2. Up to 256MB/Row support 16Mb, 64Mb, 128Mb, 256Mb SDRAM technology
- 3. Supports SDRAM with 12/10/8ns speed
- 4. Supports 3 pcs 168pin DIMM sockets (3.3V Unbuffered and 4 clock type)

BIOS

- 1. AWARD Plug and Play BIOS
- 2. Support APM V1.2 and ACPI V1.0 spec
- 3. Flash Memory for easy upgrade

Super I/O Function

- 1. Integrated USB V1.1 and Intel Universal HCI V1.1 controller with three USB ports. Provide 3 USB connectors.
- 2. Supports 2 IDE channels with 4IDE devices (including ZIP/LS-120 devices)
- 3. Provides PCI IDE Bus Master function and supports Ultra ATA33/66 function
- 4. One floppy port
- 5. Two high speed 16550 FIFO UART ports
- 6. One parallel port with EPP/ECP/SPP capabilities
- 7. Support Legacy keyboard and PS/2 mouse connector
- 8. Built-in RTC, CMOS, keyboard controller on single I/O chip
- 9. Peripherals boot function (with ATX power)

■ Onboard built-in AC97 Digital Audio Controller

- 1. Integrated sound controller compatible with Sound Blaster Pro[™] for Windows DOS box and real-mode DOS legacy compatibility
- 2. Standard V1.0 or V2.0 AC97 Codec interface
- 3. Plug and Play with 4 IRQ, 4DMA and 4 I/O space options for 4. SoundBlaster Pro and MIDI hardware
- 5. Hardware assisted FM synthesis for legacy compatibility

Onboard built-in VGA Controller

- 1. Supports 2 to 8 MB of frame buffer located in system memory
- 2. Real time DVD MPEG-2 and AC-3 playback Video processor
- 3. Integrated 24-bits 230MHz true color DAC
- 4. Extended screen resolutions up to 1600 * 1200
- 5. DirectX6 and OpenGL ICD API

Other Functions

- 1. Micro ATX size 21.1cm x 24.4cm.
- 2. 3 PCI Master slots, 1 ISA slot.
- 3. Supports SCSI/CD-ROM Boot function.
- 4. Supports jumperless setting.
- 5. Supports Wake On Lan (WOL) function. **
- 6. Onboard built-in hardware monitor feature.

** For support WOL, the ATX power supply has to have at least 5V/720mA standby current. **

Mainboard Layout

Mainboard default setting for AMD K6-2 350/100MHz CPU

55F5 layout

NOTE: 1. Adjust SW2 DIP1 ~ DIP4 for selecting Vcore Voltage.

- 2. Adjust SW2 DIP5 ~ DIP7 for selecting CPU Ratio.
 - 3. SW2 DIP8 is unused. So user can ignore its position.

Chapter 2 Hardware Setup

CPU Settings

■ AMD K6-2 / K6-III CPUs Settings

MII-333

MII-350

MII-466

■ IDT WinChip C6 /C6-2 CPUs Settings

■ Intel Pentium / AMD K5 CPUs Settings

■ Intel Pentium MMX CPUs Settings

Vcore Voltage Settings - SW2

Vcore	SW2 DIP1 ~ DIP4	Vcore	SW2 DIP1 ~ DIP4
2.0V	$ \begin{array}{c c} $	2.8V	ON
2.1V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.9V	$ON \frac{\bigcirc 2}{\bigcirc \bigcirc $
2.2V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.0V	$ON \begin{array}{ c c c c c } \hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
2.3V	$ON \xrightarrow{\bigcirc 2} \bigcirc 0 \\ \hline 0 \\ $	3.1V	$ON \frac{\begin{array}{c c} \hline \hline$
2.4V	$ON \xrightarrow[F]{P} 1 4 8$	3.2V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2.5V	$ON \begin{array}{ c c c c c } \hline \bigcirc & & & & & & & \\ \hline \bigcirc & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	3.3V	$ON \begin{array}{c c} \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 4 \\ \hline 8 \\ $
2.6V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.4V	ON
2.7V	$ON \frac{\begin{array}{ c c } & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ 1 & 4 & 8 \end{array}}{\begin{array}{ c } & & & \\ \hline \end{array}}$	3.5V	$ON \frac{\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

NOTE: 1. Adjust SW2 DIP1 ~ DIP4 for selecting Vcore Voltage.

2. Adjust SW2 DIP5 ~ DIP7 for selecting CPU Ratio.

3. SW2 DIP8 is unused. So user can ignore its position.

CPU Ratio Settings – SW2

Ratio	SW2 DIP5 ~ DIP7	Ratio	SW2 DIP5 ~ DIP7
1.5x	ON 1 5 6 7 8	4.0x	ON 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.0x	ON 2 0 0 1 5 6 7 8	4.5x	ON 1 5 6 7 8
2.5x	ON 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.0x	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.0x	ON 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	5.5x	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.5x	ON Image: Constraint of the second seco		

NOTE: 1. Adjust SW2 DIP1 ~ DIP4 for selecting Vcore Voltage.

2. Adjust SW2 DIP5 ~ DIP7 for selecting CPU Ratio.

3. SW2 DIP8 is unused. So user can ignore its position.

CPU Clock Settings – SW1

CPU Clock	PCI Clock	SW1
60	30 (CPU Clock /2)	$ \begin{array}{c c} \text{ON} & & \\ \hline & & \\ $
66.8	33.4 (CPU Clock /2)	ON 2 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70	35 (CPU Clock /2)	
75	25 (CPU Clock / 2)	$ON \xrightarrow[V]{0} \frac{O}{Z} \frac{O}{Z} \frac{O}{V} \frac$
80	26.6 (CPU Clock /3)	
83.3	27.7 (CPU Clock /3)	$ON \frac{\bigcirc 2 & \bigcirc 2}{\bigcirc 2 & \bigcirc 2} \\ 1 & 4$
95	31.7 (CPU Clock /3)	
100	33.3 (CPU Clock /3)	

SW1-1

CPU Clock	PCI Clock	SW1
75	37.5 (CPU Clock / 2)	
80	40 (CPU Clock / 2)	
83.3	41.6 (CPU Clock / 2)	
105	35 (CPU Clock / 2)	
110	36.6 (CPU Clock /3)	
115	38.3 (CPU Clock /3)	
120	40 (CPU Clock /3)	
124	41.3 (CPU Clock /3)	$ON \begin{array}{c c} & & & & \\ \hline & & & \\ 1 & 4 \end{array}$

SW1-2

Jumper Settings

■ JFAN 1~2: Onboard FAN (12V) Connector

FAN#	Function
JFAN1	CPU FAN
JFAN2	System FAN

■ JVIO: Single / Dual Voltage Select

Status	JVIO
Single Voltage	531
For P54C / K5 / 6x86 CPUs	6 4 2
Dual Voltage	531
For MMX / 6x86L / MII / K6 / K6-2 / K6-III CPUs	c o O c o O 6 4 2

■ JBAT1: Clear CMOS Data

Status	JBAT1
Hold CMOS Data (Default)	1 •
Clear CMOS Data	1 <u>°</u> 23

■ JWOL1: Wake On LAN

connect the network card to WOL signal connector.

■ JCD_IN1: CD-ROM Audio connector

Connect JCD_IN1 to the CD-ROM Audio Connector.

■ CD_IN1: CD-ROM Audio connector

Connect CD_IN1 to the CD-ROM Audio Connector.

■ GAME / MIDI Port:

Connect Joystick or MIDI device to this port.

- MIC: Microphone Jack
- LINE IN: Audio in Jack
- LINE / SPEAKER OUT: Audio out Jack
- RT2: Reserved

J1	Pin	Signal Description
	1	+5V
	2	HDD LED Signal
HDD LED Connector	3	HDD LED Signal
	4	+5V
N.C.	5	No Connection
	6	Infrared Transmit Signal
	7	GND
	8	Infrared Receive Signal
Infrared Connector		(low speed)
	9	Infrared Receive Signal
		(high speed)
	10	+5V
N.C.	11	No Connection
	12	5V Standby
	13	Power Switch
	14	SMI Signal
JLEEF	15	GND

■ J1 Switch Signal Summary

J1 pin1 ~ pin4: IDE LED Activity Light

This connector connects to the hard disk activity indicator light on the case.

J1 pin6 ~ pin10: Infrared Port Module Connector

The system board provides a 5-pin infrared connector-R1 for an optional wireless transmitting and receiving module. Pin 6 through pin 10 are Transmit, GND, Receive (low speed), Receive (high speed), and Vcc, Respectively.

J1 pin12, pin13: ATX Power Switch

Toggle this pin for turning on/off the ATX Power Supply.

J1 pin14, pin15: Sleep Switch

Toggle this jumper force the system to sleep and the system won't wake up until the hardware event is coming. (the BIOS Power Management setting must be Enabled.)

■ J2 Switch Signal Summary

J2	Pin	Signal Description
	1	Speaker Signal
Speaker Connector	2	No Connection
Speaker Connector	3	Ground
	4	+5V
Dopot Switch	5	Reset Signal
Reset Switch	6	Ground
N.C.	7	No Connection
	8	+5V
Power LED Connector	9	No Connection
	10	Ground
NC	11	No Connection
N.C.	12	No Connection
N.C.	13	No Connection
Turba LED Connector	14	Turbo LED Connector
	15	Ground

J2 pin1 ~ pin4: Speaker Connector

The speaker connector is a 4-pin connector for connecting the system and the speaker.

J2 pin5, pin6: Reset Switch

The system board has a 2-pin connector for rebooting your computer without having to turn off your power switch. This prolongs the life of the system's power supply.

J2 pin8 ~ pin10: Power LED

..... See the following drawing for jumper position, and pin8 ~ pin10 is connected to power LED.

J2 pin14 ~ pin15: Turbo LED	
J2 pin14 ~ pin15: Turbo LED	

Connectors

 ① : HDD LED
 ② : INFRARED (IR)

 ③ : POWER SWITCH
 ④ : SLEEP SWITCH

 ⑤ : SPEAKER
 ⑥ : RESET SWITCH

 ⑦ : POWER LED
 ⑧ : TURBO LED

21

Software setup

Onboard AC97 Audio Codec Driver Installation

For Windows95/98:

- 1. Enter Control Panel ->Device Manager -> Sound,video and game controller -> VIA AC97 PCI AUDIO Device [WDM Driver]
- 2. Press Mouse right button (or double click this item).
- Select "Update Driver" and change the directory to CD\Driver\Audio\VIA AC97\Win9X\VIAUDIO.INF (Win9X depend on user's O.S.: Win95 or Win98).
- 4. Reboot the system.

For Windows NT4.0:

- Enter Control Panel ->Multimedia ->Device ->Add ->select "Unlist or Updated Driver"
- 2. Change the directory to CD:\Driver\Audio\VIA\AC97\WINNT40\OEMSETUP.INF
- 3. Reboot the system.

NOTE: If user want to use external sound card, then user must "disabled" "OnChip Sound" option in the BIOS "CHIPSET FEATURE SETUP".

Onboard VGA Driver Installation

For Win95/98, NT4.0:

- 1. Enter Control Panel ->Device Manager -> Display adapters
- Press Mouse right button (or double click this item). Select "Change..." and there will appear a window asks you to continue, press "Next".
- 3. Then select "Display a list of drivers in a specific location, so you can select the driver you want." dialog box and press "Next".
- 4. Press "Have Disk" and press "Next".
- Press "Browse...", change the directory to CD-ROM location, if the CD-ROM is D, change to D:\Driver\MVP4\VGA\Win9x\Trident.inf and press "OK".
- Select "Trident 8400 PCI/AGP(v6.50.5474)", and press "OK".
- 7. Press "Yes" and finish the process.

Chapter 3

Award BIOS Setup

This motherboard comes with the AWARD BIOS from AWARD Software Inc. Enter the Award BIOS program Main Menu by:

1. Turn on or reboot the system. After a series of diagnostic checks, the following message will appear:

PRESS TO ENTER SETUP

2. Press the key and the main program screen will appear as follows.

ROM PCL/ISA BIOS CMOS SETUP UTILITY AWARD SOFTWARE, INC.			
STANDARD CMOS SETUP	CPU SPEED SETTING		
BIOS FEATURES SETUP	INTEGRATED PERIPHERALS		
CHIPSET FEATURES SETUP	SUPERVISOR PASSWORD		
POWER MANAGEMENT SETUP	USER PASSWORD		
PNP/PCI CONFIGURATION	IDE HDD AUTO DETECTION		
LOAD SETUP DEFAULTS	SAVE & EXIT SETUP		
	EXIT WITHOUT SAVING		
Esc : Quit $\uparrow \downarrow \rightarrow \leftarrow$:Select Item			
F10 : Save & Exit Setup (Shift) F2 : Change Color		
Time, Date, Hard Disk Type			

- 3. Using the arrows on your keyboard, select an option, and press <Enter>. Modify the system parameters to reflect the options installed in your system.
- 4. You may return to the Main Menu anytime by pressing <ESC> .
- 5. In the Main Menu, "SAVE AND EXIT SETUP" saves your changes and reboots the system, and "EXIT WITHOUT SAVING" ignores your changes and exits the program.

Standard CMOS Setup

Standard CMOS Setup allows you to record some basic system hardware configuration and set the system clock and error handling. You only need to modify the configuration values of this option when you change your system hardware configuration or the configuration stored in the CMOS memory gets lost or damaged.

ROM PCI/ISA BIOS

Run the Standard CMOS Setup as follows:

1. Choose "STANDARD CMOS SETUP" from the Main Menu and a screen with a list of options will appear.

		STAN	JDARD	CMOS	SETUP			
		AWAR	D SOF	TWAR	E, INC.			
Date (mm:dd:yy) :	: Thu, Mə	y 9 1	996					
Time (hh:mm:ss) :	: 15 : 45	: 10						
NARD DIGKO	mupp	OTED	avi a		DDECOMD		GEOED	MODE
HARD DISKS	TYPE	SIZE	CILS	HEAD	PRECOMP	LANDZ	SECTOR	MODE
Rimary Master	: Auto	0	0	0	0	0	0	Auto
Primary Slave	: Auto	0	0	0	0	0	0	Auto
Secondary Master	: Auto	0	0	0	0	0	0	Auto
Secondary Slave	: Auto	0	0	0	0	0	0	Auto
Drive A: 1.44M, 3	3.5 in.							
Drive B: None				Bas	e Memory	v: (640K	
				Ext	ended .	Memo:	ry: 15	360K
				Oth	er Memor	ry:	384K	
Video : EGA/VGA					al Mama	- 1.03	0.472	
Halt On : All Ern	rors			100	ai Memo.	су: 163	384K	
Esc : Quit	$\uparrow \ \downarrow \ \rightarrow$	← :	Selec	t Ite	m Pl	J/PD/+/	'- : Mod	lify
F1 : Help	(Shift) F2 :	Char	ige Co	lor			

2. Use one of the arrow keys to move between options and modify the selected options by using PgUp/PgDn/+/- keys.

A short description of the screen options is as follows:

Date (mm:dd:yy) Time (hh:mm:ss)	Set the current date and time.
Primary (Secondary)	This field records the specifications for all non-SCSI hard disk drives
Master/Slave	installed in your system. Refer to the respective documentation on how to install the drives.
Drive A/B	Set this field to the type(s) of floppy disk drive(s) installed in your system. The choices are: 360KB, 5.25 in., 1.2MB, 5.25 in., 720KB, 3.5 in., 1.44M, 3.5 in. (default), 2.88MB, 3.5 in., or None
Video	Set this field to the type of video display card installed in the system. The choices are: Monochrome; Color 40x25; VGA/EGA (default); Color 80x25
Halt On	Set this warning feature for the type of errors that will cause the system to halt. The choices are: All Errors (default); No Errors; All, But Keyboard; All, But Diskette; or All, But Disk/Key

3. Press <ESC> to return to the Main Menu when you finish setting up the "Standard CMOS Setup"

BIOS Features Setup

BIOS Features Setup allows you to improve your system performance or set up system features according to your preference.

Run the BIOS Features Setup as follows:

1. Choose "BIOS FEATURES SETUP" from the Main Menu and a screen with a list of options will appear.

	ROM PCI/IS	A BIOS
_	BIOS FEATURE	ES SETUP
/	AWARD SOFTWA	RE, INC.
Virus Warning	: Disabled	Video BIOS Shadow : Enabled
CPU Internal Cache	: Enabled	C8000-CBFFF Shadow : Disabled
External Cache	: Enabled	CC000-CFFFF Shadow : Disabled
CPU L2 Cache ECC Checking	: Enabled	D0000-D3FFF Shadow : Disabled
Quick Power on Self Test	: Enabled	D4000-D7FFF Shadow : Disabled
Boot Sequence	: A,C,SCSI	D8000-DBFFF Shadow : Disabled
Swap Floppy Drive	: Disabled	DC000-DFFFF Shadow : Disabled
Boot Up Floppy Seek	: Disabled	
Boot Up NumLock Status	: On	
IDE HDD Block MODE	: Enabled	
Gate A20 Option	: Fast	
Memory Parity/ECC Check	: Disabled	ESC :Quit $\uparrow \downarrow \rightarrow \leftarrow$: Select Item
Typematic Rate Setting	: Disabled	F1 :Help PU/PD/+/-: Modify
Typematic Rate (Chars/Sec)	: 6	F5 :Old Values(Shift)F2 : Color
Typematic Delay (Msec)	: 250	F6 :Load BIOS Defaults
Security Option	: Setup	F7 :Load Setup Defaults
PCI/VGA Palette Snoop	: Disabled	
OS Select for DRAM > 64MB	: Non-OS/2	
Report No FDD For WIN 95	: No	

 Use one of the arrow keys to move between options and modify the selected options by using PgUp/PgDn/+/- keys. An explanation of the <Fx> keys follows:

<F1>: "Help" gives options available for each item.

- Shift <F2>: Change color.
- <F5>: Get the previous values. These values are the values with which the user started in the current session.
- <F6>: Load all options with the BIOS default values.
- <F7>: Load all options with the Setup default values.

A short description of screen options follows:

- Virus Warning Enabled: Activates automatically when the system boots up causing a warning message to appear if there is anything attempting to access the boot sector or hard disk partition table.
 - Disabled: No warning message will appear when there is something attempting to access the boot sector or hard disk partition table

Note: Many diagnostic (or boot manager) programs which attempt to access the boot sector table can cause the above warning message. If you will be running such a program, we recommend that you disable the virus protection first.

CPU Internal Cache	Choose Enabled (default) or Disabled. This option allows you to enable or disable the CPU's internal cache.
External Cache	Choose Enabled (default) or Disabled. This option allows you to enable or disable the external cache memory.
Quick Power On Self Test	Choose Enabled (default) or Disabled. This option allows you to speed up the Power-On Self-Test routine.
Boot Sequence	Default is "A, C, SCSI" This option determines which drive to look at first for an operating system.
Swap Floppy Drive	Choose Enabled or Disabled(default). This option swaps floppy drive assignments when it is enabled.
Boot Up Floppy Seek	Enabled (default): During POST, BIOS checks the track number of the floppy disk drive to see whether it is 40 or 80 tracks.
	Disabled: During POST, BIOS will not check the track number of the floppy disk drive.

Boot Up NumLock Status	Choose On (default) or Off. This option lets user activate the NumLock function at boot-up.
Gate A20 Option	Choose Normal or Fast (default). This option allows the RAM to access the memory above 1MB by using the fast gate A20 line.
Memory Parity /ECC Check	Choose Enabled or Disabled
Typematic Rate Setting	Choose Enabled or Disabled(default). Enable this option to adjust the keystroke repeat rate.
Typematic Rate (Chars/Sec)	Range between 6 (default) and 30 characters per second. This option controls the speed of repeating keystrokes.
Typematic Delay (Msec)	Choose 250 (default), 500, 750, and 1000. This option sets the time interval for displaying the first and the second characters.
Security Option	Choose System or Setup (default). This option prevents unauthorized system boot-up or use of BIOS Setup.
PCI/VGA palette Snoop	Choose Enabled or Disabled(default). It determines whether or not the MPEG ISA cards can work with PCI/VGA.
OS Select for DRAM > 64MB	Non-OS2 (default): For Non-OS/2 system. OS/2: For OS/2 system.
Report No FDD For WIN95	Yes: BIOS reports "NO FDD" to Win95. No (default): BIOS will not report "NO FDD" to Win95.
Video BIOS	Enabled (default): Map the VGA BIOS to system
Shadow	Disabled: Will not map the VGA BIOS to system RAM.

C8000-CBFFF toThese options are used to shadow other expansionDC000-DFFFcard ROMs.Shadow

3. Press <ESC> and follow the screen instructions to save or disregard your settings.

Chipset Features Setup

Chipset Features Setup changes the values of the chipset registers. These registers control the system options. Run the Chipset Features Setup as follows:

1. Choose "CHIPSET FEATURES SETUP" from the Main Menu and a screen with a list of options will appear.

ROM PCI/ISA BIOS CHIPSET FEATURES SETUP AWARD SOFTWARE, INC.

Bank 0/1 DRAM Timing	: SDRAM 10ns	
Bank 2/3 DRAM Timing	: SDRAM 10ns	
Bank 4/5 DRAM Timing	: SDRAM 10ns	
SDRAM Cycle Length	: 3	
DRAM Read Pipeline	: Disabled	
Sustained 3T Write	: Enabled	
Cache R/CPU W Pipeline	: Enabled	
Cache Timing	: Fast	
System BIOS Cacheable	: Enabled	
Video BIOS Cacheable	: Enabled	
Memory Hole	: Disabled	
Init Display First	: PCI Slot	
Frame Buffer Size	: 8M	
AGP Aperture Size	: 64M	ESC: Ouit $\uparrow \downarrow \rightarrow \leftarrow$: Select Item
OnChip USB	: Enabled	F1 : Help PU/PD/+/-: Modify
Onchip USB 2	: Enabled	F5 · Old Values (Shift)F2 · Color
USB Keyboard Support	: Disabled	F6 : Load BIOS Defaults
Onchip Sound	: Enabled	F7 : Load Setup Defaults
Onchip Modem	: Disabled	

2. Use one of the arrow keys to move between options and modify the selected options by using PgUp/PgDn/+/- keys.

A short description of screen options follows:

Bank 0/1 2/3 4/5 DRAM Timing	This item allows you to select the value in this field, depending on whether the board has paged DRAMs or EDO (extended data output) DRAMs. The Choice: EDO 50ns, EDO 60ns,Slow, Medium, Fast, Turbo.
SDRAM Cycle Length Time	You can select CAS latency time in HCLKs of 2/2 or 3/3. The system board designer should have set the values in this field, depending on the DRAM installed. Do not change the values in this field unless you change specifications of the installed DRAM or

the installed CPU.

System BIOS Cacheable	Choose Enabled or Disabled(default). When Enabled, the access to the system BIOS ROM addressed at F0000H-FFFFFH is cached.
Video BIOS Cacheable	Choose Enabled or Disabled(default). When Enabled, the access to the VGA BIOS addressed is cached.
Memory Hole	Choose Enabled or Disabled (default). In order to improve performance, certain space in memory can be reserved for ISA cards. This memory must be mapped into the memory's space below 16MB.
Init Display First	This item allows you to decide to active whether PCI Slot or AGP first. The choice: PCI Slot, AGP.
AGP Aperture Size (MB)	Choose 4, 8, 16, 32, 64 (default), 128, or 256 MB. Memory mapped and graphics data structures can reside in a Graphics Aperture. This area is like a linear buffer. BIOS will automatically report the starting address of this buffer to the O.S.
OnChip USB OnChip USB2	This should be enabled if your system has a USB installed on the system board and you wish to use it. Even when so equipped, if you add a higher performance controller, you will need to disable this feature. The choice: Enabled, Disabled.
USB Keyboard Support	Enabled: Enables function when the USB keyboard is being used. Disabled: (default) When the AT keyboard is being used.
OnChip Sound	Enabled (default): Turn on AC97 chip Controller. Disabled: Turn off AC97 chip controller or User can external add-on sound card

OnChip Modem Enabled :Turn on MC99 feature. Disabled(default):Disabled AC97 chip controller or User can external add-on modem

3. Press <ESC> and follow the screen instructions to save or disregard your settings.

Power Management Setup

Power Management Setup sets the system's power saving functions.

1. Choose "POWER MANAGEMENT SETUP" from the Main Menu and a screen with a list of options will appear.

ROM PCI/ISA BIOS POWER MANAGEMENT SETUP AWARD SOFTWARE, INC.					
ACPI Function	:Disabled	Primary INTR	: ON		
Power Management	:User Define	IRQ3 (COM2)	: Primary		
PM Control by APM	:Yes	IRQ4 (COM1)	: Primary		
Video Off Method	:V/H SYNC+Blank	IRQ5 (LPT2)	: Primary		
Video Off After	:Suspend	IRQ6 (Floppy Disk)	: Primary		
Modem Use IRQ	:3	IRQ7 (LPT 1)	: Primary		
HDD Power Down	:Disabled	IRQ8 (RTC Alarm)	: Disabled		
Doze Mode	:Disabled	IRQ9 (IRQ2 Redir)	: Secondary		
Suspend Mode	:Disabled	IRQ10 (Reserved)	: Secondary		
Soft-Off by PWRBTN	:Instant-Off	IRQ11 (Reserved)	: Secondary		
PWON After PW-Fail	:Former-Sts	IRQ12 (RS/2 Mouse)	: Primary		
PM Event	S	IRQ13 (Coprocessor)	: Primary		
VGA	:OFF	IRQ14 (Hard Disk)	: Primary		
LPT&COM	:LPT/COM	IRQ15 (Reserved)	: Disabled		
HDD&FDD	:ON	ESC : Quit $\uparrow \downarrow \rightarrow \leftarrow$:	: Select Item		
DMA/master	:OFF	F1 : Help PU/PD/+,	/- : Modify		
RTC Alarm Resume	:Enabled	F5 : Old Values (Shift)F2 : Color		
Date(of Month)	: 0	F6 : Load BIOS Default	s		
Timer(hh:mm:ss)	: 0: 0: 0	F7 : Load Setup Defaul	ts		
Modem Ring Resume	:Disabled	_			

2. Use one of the arrow keys to move between options and modify the selected options by using PgUp/PgDn/+/- keys.

A short description of screen options follows:

ACPI Function	Enabled: Turn on ACPI Function. Disabled(default): Turn off ACPI Function.
Power Management	Choose Max. Saving, User Define(default), Disabled, or Min. Saving.
PM Control by APM	Choose Yes (default) or No. You need to choose Yes when the operating system has the APM functions, otherwise choose No.

Vid	eo Off Method	This determines the manner in which the monitor i	
		blanked.	
	V/H SYNC+Blank	This selection will cause the system to turn off the vertical and horizontal synchronization ports and write blanks to the video buffer.	
	Blank Screen	This option only writes blanks to the video buffer.	
	DPMS	Select this option if your monitor supports the Display Power Management Signaling (DPMS) standard of the Video Electronics Standards to select video power management values.	
Vid	eo Off After	Choose NA, Suspend, Standby(default), or Doze.	
мо	DEM Use IRQ	This determines the IRQ in which the MODEM can use. The choices: 3, 4, 5, 7, 9, 10, 11, NA.	
Sof PW	it-Off by R-BTTN	Pressing the power button for more than 4 seconds forces the system to enter the Soft-Off state when the system has "hung". The choices: Delay 4 Sec, Instant-Off.	
Do	ze Mode	When enabled and after the set time of system inactivity, the CPU clock will run at slower speed while all other devices still operate at full speed.	
Su	spend Mode	When enabled and after the set time of system inactivity, all devices except the CPU will be shut off.	
HD	D Power Down	When enabled and after the set time of system inactivity, the hard disk drive will be powered down while all other devices remain active.	

PM Events

PM events are I/O events whose occurrence can prevent the system from entering a power saving mode or can awaken the system from such a mode. In effect, the system remains alert for anything which occurs to a device which is configured as On, even when the system is in a power down mode.

VGA	When Enabled, your can set the LAN awakens the system.
LPT & COM	When On of LPT & COM, any activity from one of the
	- ·

	listed system peripheral devices or IRQs wakes up the system.
HDD & FDD	When On of HDD & FDD, any activity from one of the listed system peripheral devices wakes up the system.
DMA / master	When you are On of DMA / ISA Master, any activity from one of the list system peripheral devices wakes up the system.
Modem Ring Resume	An input signal on the serial Ring Indicator (RI) line (in other words, an incoming call on the modem) awakens the system from a soft off state.
RTC Alarm Function	When Enabled, your can set the date and time at which the RTC (real-time clock) alarm awakens the system from Suspend mode.
Primary INTR	When set to On, any event occurring at will awaken a system which has been powered down.

The following is a list of IRQ's, Interrupt ReQuests, which can be exempted much as the COM ports and LPT ports above can. When an I/O device wants to gain the attention of the operating system, it signals this by causing an IRQ to occur. When the operating system is ready to respond to the request, it interrupts itself and performs the service. When set On, activity will neither prevent the system from going into a power management mode nor awaken it. IRQ3 (COM 2) IRQ4 (COM 1) IRQ5 (LPT 2) IRQ6 (Floppy Disk) IRQ7 (LPT 1) IRQ8 (RTC Alarm) IRQ9 (IRQ2 Redir) IRQ10 (Reserved) IRQ11 (Reserved) IRQ12 (PS / 2 Mouse) IRQ13 (Coprocessor) IRQ14 (Hard Disk) IRQ15 (Reserved).

Note: These functions can only be activated when the power management option is Enabled

3. Press <ESC> and follow the screen instructions to save or disregard your settings.

PnP/PCI Configuration Setup

PnP/PCI Configuration Setup configures the PCI bus slots. Run the Chipset Features Setup as follows:

1. Choose "PnP/PCI CONFIGURATION SETUP" from the Main Menu and a screen with a list of options will appear.

ROM PCI/ISA BIOS PNP/PCI CONFIGURATION AWARD SOFTWARE, INC.

PNP OS Installed : No Resources Controlled By : Auto Reset Configuration Data: Disabled IRQ-3 assigned to : PCI/ISA PnP IRQ-5 assigned to : PCI/ISA PnP IRQ-7 assigned to : PCI/ISA PnP IRQ-7 assigned to : PCI/ISA PnP IRQ-10 assigned to : PCI/ISA PnP IRQ-11 assigned to : PCI/ISA PnP IRQ-12 assigned to : PCI/ISA PnP IRQ-14 assigned to : PCI/ISA PnP IRQ-15 assigned to : PCI/ISA PnP	CPU to PCI Write Buffer : Enabled PCI Dynamic Bursting : Enabled PCI Master O WS Write : Enabled PCI Delay Transaction : Enabled PCI#2 Access #1 Retry : Disabled AGP Master 1 WS Write : Enabled AGP Master 1 WS Read : Disabled PCI IRQ Actived By : Level Assign IRQ For USB : Enabled Assign IRQ For VGA : Enabled
DMA-1 assigned to: PCI/ISA PnP DMA-3 assigned to: PCI/ISA PnP DMA-5 assigned to: PCI/ISA PnP DMA-6 assigned to: PCI/ISA PnP DMA-7 assigned to : PCI/ISA PnP	$\begin{array}{rcl} & \text{ESC} : \text{Quit} & \uparrow \downarrow \rightarrow \leftarrow: \text{Select Item} \\ & \text{F1} & \text{Help} & \text{PU/PD/+/-} & \text{Modify} \\ & \text{F5} & \text{Old Values} & (\text{Shift})\text{F2} & \text{Color} \\ & \text{F6} & \text{Load BIOS Defaults} \\ & \text{F7} & \text{Load Setup Defaults} \end{array}$

2. Use one of the arrow keys to move between options and modify the selected options by using PgUp/PgDn/+/- keys.

A short description of screen options follows:

PNP OS Installed Yes: OS supports Plug and Play function. No (default): OS doesn't support Plug and Play function.

Note: BIOS will automatically disable all PnP resources except the boot device card when you select Yes on Non-PnP OS..

- Resources
Controlled ByChoose Manual (default) or Auto. The BIOS checks
the IRQ/DMA channel number on the ISA and PCI
card manually if you choose Manual and the IRQ/DMA
channel number will be checked automatically if you
choose Auto.
- Reset Choose Enabled or Disabled(default). Disabled retains

Configuration Data	PnP configuration data in BIOS and Enabled resets the PnP configuration data in the BIOS.
IRQ-x assigned to DMA-x assigned to	Legacy ISA: Manually assigns IRQ/DMA to device. PCI/ISA PnP: BIOS assigns IRQ/DMA to device automatically.
Assign IRQ for USB	Choose Enabled (default) or Disabled. Enabled: Add one IRQ to USB controller. Disabled: Remove IRQ from USB controller. The system will have extra IRQ for other devices but the USB controller will still not be disabled (only IRQ was removed.)
Assign IRQ for VGA	Choose Enabled (default) or Disabled. Enabled: Add one IRQ to VGA controller. Disabled: Remove IRQ from VGA controller. The system will have extra IRQ for other devices but the VGA controller will still not be disabled (only IRQ will be removed.)

3. Press <ESC> and follow the screen instructions to save or disregard your settings.

Load Setup Defaults

Load Setup Defaults option loads the default system values to the system configuration fields. If the CMOS is corrupted the defaults are loaded automatically. Choose this option and the following message will appear:

"Load Setup Defaults (Y/N)? N"

To use the Setup defaults, change the prompt to "Y" and press <Enter>.

CPU SPEED SETTING

ROM	PCI/ISA	BIOS
PNP/PC	I CONFIG	URATION

AWARD SOFTWARE, INC.

Current cpu Temp. Current System Temp. Current CPUFAN1 Speed Current CPUFAN2 Speed Vcore: 1.96V 2.5V 3.3V: 3.36V 5V 12V: 12.00V	:33 C / 91 F :26 C / 78 F : 3810 RPM : 0 RPM : 2.46 V : 5.02 V	
		ESC : Quit $\uparrow \downarrow \rightarrow \leftarrow$: Select Item F1 : Help PU/PD/+/- : Modify F5 : Old Values (Shift)F2 : Color F6 : Load BIOS Defaults F7 : Load Setup Defaults

Integrated Peripherals

Integrated Peripherals option changes the values of the chipset registers. These registers control system options in the computer.

1. Choose "INTEGRATED PERIPHERALS" from the Main Menu and a screen with a list of options will appear.

ROM	PCI/	ISA	ΒI	OS	
INTEGRA	TED	PERI	PH	ERAI	SL
AWARD	SOFT	WARF	1.	INC.	

	1 11	and berin		
Onchip IDE Channel0 Onchip IDE Channel1 IDE Prefetch Mode IDE HDD Block Mode Primary Master PIO Secondary Master PIO Primary Master UDMA Primary Slave UDMA Secondary Master UDMA Secondary Slave UDMA Onboard FDC Controller Onboard Serial Port 1 Onboard Serial Port 2		Enabled Enabled Enabled Auto : Auto : Auto : Auto Auto Auto Enabled 3F8/IRQ4	Onboard Parallel Mode ECP Mode Use DMA Parallel Port EPP Type Onboard Legacy Audio Sound Blaster SB I/O Base Address SB IRQ Select SB DMA Select MPU-401 MPU-401 I/O Address FM Port (388-38BH) Game Port (200-207H)	: ECP/EPP : 3 : EPP1.7 : Enabled : Enabled : 220H : IRQ 5 : DMA 1 : Disabled : 330-333H : Disabled : Enabled
2F8/IRQ3 UART 2 Mode IR Function Duplex TX,RX, inverting enable Onboard Parallel Port	: : :	HPSIR Half No,No 378/IRQ7	ESC : Quit $\uparrow \downarrow \rightarrow \leftarrow$: F1 : Help $PU/PD/+$ F5 : Old Values (Shif F6 : Load BIOS Defaul F7 : Load Setup Defau	Select Item /- : Modify t)F2: Color ts lts

2. Use one of the arrow keys to move between options and modify the selected options by using PgUp/PgDn/+/ - keys.

A short description of screen options is as follows:

On-Chip IDE Channel 0/1	Enabled (default): Turn on the onboard IDE function. Disabled: Turn off the onboard IDE function.
IDE Prefetch Mod	The onboard IDE drive interfaces supports IDE prefetching, for faster drive accesses. If you install a primary and/or secondary add-in IDE interface, set this field to Disabled if the interface does not support prefetching. The choice: Enabled, Disabled.
IDE HDD Block disk	Choose Enabled (default) or Disabled. If your hard
Mode	size is larger than 540MB, choose Enabled, and, if you are using the IDE HDD Auto Detection option, the BIOS will choose this option automatically.

Note: Some older model HDDs don't provide this feature.

Primary Master/Slave PIO Secondary Master/Slave PIO	Choose Auto (default) or Mode 0~4. The BIOS will detect the HDD Mode type automatically when you choose Auto. You need to set to a lower mode than Auto when your hard disk becomes unstable.
Primary Master/ Slave UDMA Secondary Master/ Slave UDMA	Ultra DMA/33 implementation is possible only if your IDE hard drive supports it and the operating environment includes a DMA driver (Windows 95 OSR2 or a third-party IDE bus master driver). If your hard drive and your system software both support Ultra DMA/33, select Auto to enable BIOS support. The Choice: Auto, Mode 0, Mode 1, Mode 2.
Onboard FDC Controller	Choose Enabled (default) or Disabled. Choose Disabled when you use an ISA card with FDD function, or , choose Enabled to use the onboard FDD connector.
Onboard Serial Port 1	Choose Auto (default), 3F8/IRQ4, 2F8/IRQ3, 3E8/IRQ4, 2E8/IRQ3, or Disabled. Do no set port 1 & 2 to the same value, except when setting at Disabled.
Onboard Serial Port 2	Choose Auto (default), 3F8/IRQ4 , 2F8/IRQ3, 3E8/IRQ4, 2E8/IRQ3, or Disabled.
UART 2 Mode	Choose Standard (default), HPSIR, or ASKIR.
IR Function Duplex	Choose Half or Full.
Onboard Parallel Port	Choose the printer I/O address: 378H/IRQ7 (default), 3BCH/IRQ7, 278H/IRQ5, Disabled
Onboard Parallel Mode	Choose Normal (default), ECP/EPP EPP, or ECP mode. The mode depends on the external device connected to this port.
ECP Mode Use DMA	Choose DMA3 (default) or DMA1. Most sound cards use DMA1. Check with your sound card configuration to make sure that there is no conflict with this function.

*: This option will not be displayed unless the EPP/ECP function is selected..

Parallel Port	Choose EPP1.7 (default) or EPP1.9. EPP1.9 supports
ЕРР Туре	hardware handshake. This setting is dependent upon
	your EPP device.

Note: The above 2 options will not be displayed unless the EPP/ECP function is selected.

3. Press <ESC> and follow the screen instructions to save or disregard your settings.

Supervisor/User Password

These two options allow you to set your system passwords. Normally, the supervisor has a higher ability to change the CMOS setup option than the user. The way to set up the passwords for both Supervisor and User are as follows:

1. Choose "Change Password" in the Main Menu and press <Enter>. The following message appears:

"Enter Password:"

- 2. The first time you run this option, enter your password up to 8 characters and press <Enter>. The screen does not display the entered characters.
- 3. After you enter the password, the following message appears prompting you to confirm the password:

```
"Confirm Password:"
```

- 4. Enter the same password "exactly" as you just typed again to confirm the password and press <Enter>.
- 5. Move the cursor to Save & Exit Setup to save the password.
- 6. If you need to delete the password you entered before, choose the Supervisor Password and press <Enter>. It will delete the password that you had before.
- 7. Move the cursor to Save & Exit Setup to save the option you did, otherwise the old password will still be there the next time you turn your machine on.
- 8. Press <ESC> to exit to the Main Menu.
- Note: If you forget or lose the password, the only way to access the system is to clear the CMOS RAM by setting JBAT1. All setup information will be lost and you need to run the BIOS setup program again.

IDE HDD Auto Detection

IDE HDD Auto Detection detects the parameters of an IDE hard disk drive and automatically enters them to the Standard CMOS Setup screen.

The screen will ask you to select a specific hard disk for Primary Master after you select this option. If you accept a hard disk detected by the BIOS, you can enter "Y" to confirm and then press <Enter> to check next hard disk. This function allows you to check four hard disks and you may press the <ESC> after the <Enter> to skip this function and go back to the Main Menu.

Save & Exit Setup

Save & Exit Setup allows you to save all modifications you have specified into the CMOS memory. Highlight this option on the Main Menu and the following message appears:

SAVE to CMOS and EXIT (Y/N)? Y

Press <Enter> key to save the configuration changes.

Exit Without Saving

Exit Without Saving allows you to exit the Setup utility without saving the modifications that you have specified. Highlight this option on the Main Menu and the following message appears:

```
Quit Without Saving (Y/N)? N
```

You may change the prompt to "Y" and press the <Enter> key to leave this option.