AR-B1579 <u>Half Size Pentium(586)</u> <u>CPU BOARD</u> User's Guide

Edition: 1.2 Book Number: AR-B1579

Table of Contents

0 PR		0-3
0.1	COPYRIGHT NOTICE AND DISCLAIMER	
0.1	WELCOME TO THE AR-B1579 CPU BOARD	
0.3	BEFORE YOU USE THIS GUIDE	
0.4	RETURNING YOUR BOARD FOR SERVICE	
0.5	TECHNICAL SUPPORT AND USER COMMENTS	
0.6	ORGANIZATION	0-4
0.7	STATIC ELECTRICITY PRECAUTIONS	
1 0\	/ERVIEW	
1.1		
1.2	PACKING LIST	
1.3	FEATURES	
-	STEM CONTROLLER	
2. 31	DMA CONTROLLER	
2.1	KEYBOARD CONTROLLER	
2.2	INTERRUPT CONTROLLER	
2.3		
2.3	•	
2.3	•	
2.3	- · ·	
2.3		
2.4	SERIAL PORT	
2.5	PARALLEL PORT	2-9
3. SE	TTING UP THE SYSTEM	3-1
3.1	OVERVIEW	3-1
3.2	SYSTEM SETTING	3-2
3.2		
3.2	9.2 Watchdog Transferring Select (JP6)	3-2
3.2	P.3 Hard Disk (IDE) Connector	3-3
3.2	P.4 PC/104 Connector	3-4
3.2		
3.2		
3.2		
3.2		
3.2		
	2.10 External Speaker Header (J1)	
	2.11 Reset Header (J8) 2.12 Power Connector (J9)	
	2.12 Power Connector (J9) 2.13 LED Header	
	2.14 CPU Setting	
	Difference of Setting	
	2.16 D.O.C. Memory Address Select (SW1-7)	
	STALLATION	
	OVERVIEW	
4.1 4.2	UTILITY DISKETTE	
4.2 4.2		
4.2		
4.2		
4.2		
4.3	WATCHDOG TIMER	
4.3		
4.3	3.2 Watchdog Transferring Select (JP6)	4-5
4.3		
4.3		
4.3	0	-
5. Bl	OS CONSOLE	5-1
5.1	BIOS SETUP OVERVIEW	
5.2	STANDARD CMOS SETUP	5-2
5.3	ADVANCED CMOS SETUP	5-3
5.4	ADVANCED CHIPSET SETUP	5-6
5.5	POWER MANAGEMENT	
5.6	PCI/PLUG AND PLAY	5-8
5.7	PERIPHERAL SETUP	
5.8	AUTO-DETECT HARD DISKS	5-10

5.9 PASSWORD SETTING	
5.10 LOAD DEFAULT SETTING	
5.10.1 Auto Configuration with Optimal Setting	
5.10.2 Auto Configuration with Fail Safe Setting	
5.11 BIOS EXIT	
5.11.1 Save Settings and Exit	
5.11.2 Exit Without Saving	
5.12 BIOS UPDATE	
6. SPECIFICATIONS	6-1
7. PLACEMENT & DIMENSIONS	7-1
7.1 PLACEMENT	7-1
7.2 DIMENSIONS	
8. PROGRAMMING RS-485 & INDEX	
8.1 PROGRAMMING RS-485	
8.2 INDEX	

0.PREFACE

0.1 COPYRIGHT NOTICE AND DISCLAIMER

June 1999

Acrosser Technology makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Furthermore, Acrosser Technology reserves the right to revise this publication and to make changes from time to time in the contents hereof without obligation of Acrosser Technology to notify any person of such revisions or changes.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Acrosser or an authorized sublicensor.

(C) Copyright Acrosser Technology Co., Ltd., 1999. All rights Reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written consent of Acrosser Technology.

Acrosser, AMI, IBM PC/AT, SiS, AMD, Cyrix, Intel, Windows 3.1, Windows 95, Windows NT, OS/2 Warp, IDT Winchip, ...are registered trademarks.

All other trademarks and registered trademarks are the property of their respective holders.

This document was produced with Adobe Acrobat 3.01.

0.2 WELCOME TO THE AR-B1579 CPU BOARD

This guide introduces the Acrosser AR-B1579 CPU board.

Use the information describes this card's functions, features, and how to start, set up and operate your AR-B1579. You also could find general system information here.

0.3 BEFORE YOU USE THIS GUIDE

If you have not already installed this AR-B1579, refer to the Chapter 3, "Setting Up the System," in this guide. Check the packing list, ensure the all accessories in the package.

The AR-B1579 diskette provides the newest information about the card. **Please refer to the README.DOC file of the enclosed utility diskette**. It contains the latest modification and hardware & software information, and adding the description or modification of product function after manual published.

0.4 RETURNING YOUR BOARD FOR SERVICE

If your board requires servicing, contact the dealer from whom you purchased the product for service information. If you need to ship your board to us for service, be sure it is packed in a protective carton. We recommend that you keep the original shipping container for this purpose.

You can help assure efficient servicing of your product by following these guidelines:

- 1. Include your name, address, telephone and facsimile number where you may be reached during the day.
- 2. A description of the system configuration and/or software at the time is malfunction.
- 3. A brief description is in the symptoms.

0.5 TECHNICAL SUPPORT AND USER COMMENTS

Users' comments are always welcome as they assist us in improving the usefulness of our products and the comprehension of our publications. They form a very important part of the input used for product enhancement and revision.

We may use and distribute any of the information you supply in any way we believe appropriate without incurring any obligation. You may, of course, continue to use the information you supply.

If you have suggestions for improving particular sections or if you find any errors, please indicate the manual title and book number.

Please send your comments to Acrosser Technology Co., Ltd. or your local sales representative. Internet electronic mail to: webmaster@acrosser.com

0.6 ORGANIZATION

This information for users covers the following topics (see the Table of Contents for a detailed listing):

- Chapter 1, "Overview", provides an overview of the system features and packing list.
- Chapter 2, "System Controller", describes the major structure.
- Chapter 3, "Setting Up the System", describes how to adjust the jumpers and the connector settings.
- Chapter 4, "Installation", describes setup procedures and information on the utility diskette.
- Chapter 5, "BIOS Console", provides the BIOS options settings.
- Chapter 6, Specifications
- Chapter 7, Placement & Dimensions
- Chapter 8, Programming RS-485 & Index

0.7 STATIC ELECTRICITY PRECAUTIONS

Before removing the board from its anti-static bag, read this section about static electricity precautions.

Static electricity is a constant danger to computer systems. The charge that can build up in your body may be more than sufficient to damage integrated circuits on any PC board. It is, therefore, important to observe basic precautions whenever you use or handle computer components. Although areas with humid climates are much less prone to static build-up, it is always best to safeguard against accidents may result in expensive repairs. The following measures should generally be sufficient to protect your equipment from static discharge:

- Touch a grounded metal object to discharge the static electricity in your body (or ideally, wear a grounded wrist strap).
- When unpacking and handling the board or other system component, place all materials on an antic static surface.
- Be careful not to touch the components on the board, especially the "golden finger" connectors on the bottom of every board.

1. OVERVIEW

This chapter provides an overview of your system features and capabilities. The following topics are covered:

- Introduction
- Packing List
- Features

1.1 INTRODUCTION

The AR-B1579 makes 300MHz, industrial computing a reality. Developed for small size and high speeding systems, this half-size ISA card is excellent for embedded applications due to its standalone.

Great speeds are attained through the PCI-driven IDE controllers. By providing a PCI interface to these two controllers, the AR-B1579 offers an exciting option for engineers involved in high performance projects. Also, one BIOS is available to interface peripherals quickly and easily. The system comes with 4MB V-RAM onboard, 512KB synchronous pipe-line burst SRAM, one RS-232C and one RS-232C/RS-485 serial port, and two 72-pin SIMM connectors which can support up to 128MB of DRAM.

The AR-B1579 is perfect for medical and telecommunications applications, factory floor networks, use as a MMIs for high speeding processes, or a controller for graphics intensive systems.

1.2 PACKING LIST

The accessories are included with the system. Before you begin installing your AR-B1579 board, take a moment to make sure that the following items have been included inside the AR-B1579 package.

- The quick setup manual
- 1 AR-B1579 CPU board
- 1 Hard disk drive interface cable for 3.5" HDD
- 1 Hard disk drive interface cable for 2.5" HDD
- 1 Floppy disk drive interface cable
- 1 Parallel port interface cable and 1 RS-232C interface cable mounted on one bracket
- 1 Keyboard adapter cable
- 1 USB device adapter cable
- 3 Software utility diskettes

1.3 FEATURES

The system provides a number of special features that enhance its reliability, ensure its availability, and improve its expansion capabilities, as well as its hardware structure.

- Half size Pentium grade signal board computer
- Supports from 75MHz to 300MHz Pentium CPUs
- Up to 128MB DRAM system
- Up to 512KB PBSRAM L2 cache system
- On-board CRT panel display
- Supports IDE hard disk drives
- Supports floppy disk drives
- Supports 1 bi-directional parallel port
- Supports 2 serial ports (RS-232C and RS-485)
- PC/AT compatible keyboard and PS/2 mouse interface
- Programmable watchdog timer
- Flash BIOS
- Built-in status LEDs indicator
- 5V/12V power requirement
- Multi-layer PCB for noise reduction
- Dimensions : 122mmX185mm

2. SYSTEM CONTROLLER

This chapter describes the major structures of the AR-B1579 CPU board. The following topics are covered:

- DMA Controller
- Keyboard Controller
- Interrupt Controller
- Serial Port
- Parallel Port

2.1 DMA CONTROLLER

The equivalent of two 8237A DMA controllers are implemented in the AR-B1579 board. Each controller is the fourchannel DMA device that will generate the memory addresses and control signals necessary to transfer information directly between a peripheral device and memory. This allows high speeding information transfer with less CPU intervention. The two DMA controllers are internally cascaded to provide four DMA channels for transfers to 8-bit peripherals (DMA1) and three channels for transfers to 16-bit peripherals (DMA2). DMA2 channel 0 provides the cascade interconnection between the two DMA devices, thereby maintaining IBM PC/AT compatibility.

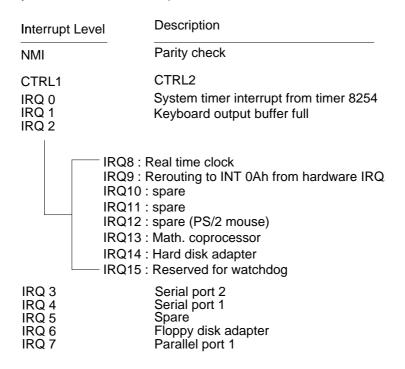
The following is the system information of DMA channels:

DMA Controller 1	DMA Controller 2		
Channel 0: Spare	Channel 4: Cascade for controller 1		
Channel 1: IBM SDLC	Channel 5: Spare		
Channel 2: Diskette adapter	Channel 6: Spare		
Channel 3: Spare	Channel 7: Spare		

Table 2-1 DMA Channel Controller

2.2 KEYBOARD CONTROLLER

The 8042 processor is programmed to support the keyboard serial interface. The keyboard controller receives serial data from the keyboard, checks its parity, translates scan codes, and presents it to the system as a byte data in its output buffer. The controller can interrupt the system when data is placed in its output buffer, or wait for the system to poll its status register to determine when data is available.


Data can be written to the keyboard by writing data to the output buffer of the keyboard controller.

Each byte of data is sent to the keyboard controller in series with an odd parity bit automatically inserted. The keyboard controller is required to acknowledge all data transmissions. Therefore, another byte of data will not be sent to keyboard controller until acknowledgment is received for the previous byte sent. The "output buffer full" interruption may be used for both send and receive routines.

2.3 INTERRUPT CONTROLLER

The equivalent of two 8259 Programmable Interrupt Controllers (PIC) are included on the AR-B1579 board. They accept requests from peripherals, resolve priorities on pending interrupts in service, issue interrupt requests to the CPU, and provide vectors which are used as acceptance indices by the CPU to determine which interrupt service routine to execute.

The following is the system information of interrupt levels:

Figure 2-1 Interrupt Controller

2.3.1 I/O Port Address Map

Hex Range	Device
000-01F	DMA controller 1
020-021	Interrupt controller 1
022-023	SiS 5598 Chipset Address
040-04F	Timer 1
050-05F	Timer 2
060-06F	8042 keyboard/controller
070-071	Real-time clock (RTC), non-maskable interrupt (NMI)
080-09F	DMA page registers
0A0-0A1	Interrupt controller 2
0C0-0DF	DMA controller 2
0F0	Clear Math Co-processor
0F1	Reset Math Co-processor
0F8-0FF	Math Co-processor
170-178	Fixed disk 1
1F0-1F8	Fixed disk 0
201	Game port
208-20A	EMS register 0
218-21A	EMS register 1
278-27F	Parallel printer port 3 (LPT 3)
2E8-2EF	Serial port 4 (COM 4)
2F8-2FF	Serial port 2 (COM 2)
300-31F	Prototype card/Streaming Type Adapter
378-37F	Parallel printer port 2 (LPT 2)
380-38F	SDLC, bisynchronous
3A0-3AF	Bisynchronous
3B0-3BF	Monochrome display and printer port 1 (LPT 1)
3C0-3CF	EGA/VGA adapter
3D0-3DF	Color/Graphics monitor adapter
3E8-3EF	Serial port 3 (COM 3)
3F0-3F7	Diskette controller
3F8-3FF	Serial port 1 (COM 1)

Table 2-2 I/O Port Address Map

2.3.2 I/O Channel Pin Assignment

I/O Pin	Signal Name	Input/Output	I/O Pin	Signal Name	Input/Output
A1	-IOCHCK	Input	B1	GND	Ground
A2	SD7	Input/Output	B2	RSTDRV	Output
A3	SD6	Input/Output	B3	+5V	Power
A4	SD5	Input/Output	B4	IRQ9	Input
A5	SD4	Input/Output	B5	-5V	Power
A6	SD3	Input/Output	B6	DRQ2	Input
A7	SD2	Input/Output	B7	-12V	Power
A8	SD1	Input/Output	B8	-ZWS	Input
A9	SD0	Input/Output	B9	+12V	Power
A10	IOCHRDY	Input	B10	GND	Ground
A11	AEN	Output	B11	-MEMW	Output
A12	SA19	Input/Output	B12	-MEMR	Output
A13	SA18	Input/Output	B13	-IOW	Input/Output
A14	SA17	Input/Output	B14	-IOR	Input/Output
A15	SA16	Input/Output	B15	-DACK3	Output
A16	SA15	Input/Output	B16	DRQ3	Input
A17	SA14	Input/Output	B17	-DACK1	Output
A18	SA13	Input/Output	B18	DRQ1	Input

A19	SA12	Input/Output	B19	-REFRESH	Input/Output
A20	SA11	Input/Output	B20	BUSCLK	Output
A21	SA10	Input/Output	B21	IRQ7	Input
A22	SA9	Input/Output	B22	IRQ6	Input
A23	SA8	Input/Output	B23	IRQ5	Input
A24	SA7	Input/Output	B24	IRQ4	Input
A25	SA6	Input/Output	B25	IRQ3	Input
A26	SA5	Input/Output	B26	-DACK2	Output
A27	SA4	Input/Output	B27	тс	Output
A28	SA3	Input/Output	B28	BALE	Output
A29	SA2	Input/Output	B29	+5V	Power
A30	SA1	Input/Output	B30	OSC	Output
A31	SA0	Input/Output	B31	GND	Ground

Table 2-3 I/O Channel Pin Assignment

I/O Pin	Signal Name	Input/Output	I/O Pin	Signal Name	Input/Output
C1	-SBHE	Input/Output	D1	-MEMCS16	Input
C2	LA23	Input/Output	D2	-IOCS16	Input
C3	LA22	Input/Output	D3	IRQ10	Input
C4	LA21	Input/Output	D4	IRQ11	Input
C5	LA20	Input/Output	D5	IRQ12	Input
C6	LA19	Input/Output	D6	IRQ15	Input
C7	LA18	Input/Output	D7	IRQ14	Input
C8	LA17	Input/Output	D8	-DACK0	Output
C9	-MRD16	Input/Output	D9	DRQ0	Input
C10	-MWR16	Input/Output	D10	-DACK5	Output
C11	SD8	Input/Output	D11	DRQ5	Input
C12	SD9	Input/Output	D12	-DACK6	Output
C13	SD10	Input/Output	D13	DRQ6	Input
C14	SD11	Input/Output	D14	-DACK7	Output
C15	SD12	Input/Output	D15	DRQ7	Input
C16	SD13	Input/Output	D16	+5V	Power
C17	SD14	Input/Output	D17	-MASTER	Input
C18	SD15	Input/Output	D18	GND	Ground

Table 2-4 I/O Channel Pin Assignment

2.3.3 I/O Channel Signal Description

Name	Description
CLK [Output]	The CLK signal of the I/O channel is asynchronous to the CPU clock.
RSTDRV [Output]	This signal goes high during power-up, low line-voltage or hardware reset
SA0 - SA19 [Input / Output]	The System Address lines run from bit 0 to 19. They are latched onto the falling edge of "BALE"
LA17 - LA23 [Input/Output]	The Unlatched Address line run from bit 17 to 23
SD0 - SD15 [Input/Output]	System Data bit 0 to 15
BALE [Output]	The Buffered Address Latch Enable is used to latch SA0 - SA19 onto the falling edge. This signal is forced high during DMA cycles
-IOCHCK [Input]	The I/O Channel Check is an active low signal which indicates that a parity error exist on the I/O board

Name	Description
IOCHRDY	This signal lengthens the I/O, or memory read/write
	cycle, and should be held low with a valid address
IRQ 3-7, 9-12, 14, 15	The Interrupt Request signal indicates I/O service
[input]	request attention. They are prioritized in the following
	sequence : (Highest) IRQ 9, 10, 11, 12, 13, 15, 3, 4, 5,
	6, 7 (Lowest)
-IOR	The I/O Read signal is an active low signal which
[Input/Output]	instructs the I/O device to drive its data onto the data bus
-IOW [Input/Output]	The I/O write signal is an active low signal which
	instructs the I/O device to read data from the data bus
-MRD16 [Output]	The System Memory Read is low while any of the low 1
	mega bytes of memory are being used
-MEMR	The Memory Read signal is low while any memory
[Input/Output]	location is being read
-MWR16 [Output]	The System Memory Write is low while any of the low 1
	mega bytes of memory is being written
-MEMW	The Memory Write signal is low while any memory
	location is being written
DRQ 0-3, 5-7 [Input]	DMA Request channels 0 to 3 are for 8-bit data
DR& 0-3, 3-7 [input]	
	transfers. DMA Request channels 5 to 7 are for 16-bit
	data transfers. DMA request should be held high until
	the corresponding DMA has been completed. DMA
	request priority is in the following sequence:(Highest)
	DRQ 0, 1, 2, 3, 5, 6, 7 (Lowest)
-DACK 0-3, 5-7	The DMA Acknowledges 0 to 3, 5 to 7 are the
[Output]	corresponding acknowledge signals for DRQ 0 to 3 and 5 to 7
AEN [output]	The DMA Address Enable is high when the DMA
	controller is driving the address bus. It is low when the
	CPU is driving the address bus
-REFRESH	This signal is used to indicate a memory refresh cycle
[Input/Output]	and can be driven by the microprocessor on the I/O
	channel
TC [Output]	Terminal Count provides a pulse when the terminal
	count for any DMA channel is reached
SBHE [Input/Output]	The System Bus High Enable indicates the high byte
	SD8 - SD15 on the data bus
-MASTER [Input]	The MASTER is the signal from the I/O processor which
	gains control as the master and should be held low for a
	maximum of 15 microseconds or system memory may
	be lost due to the lack of refresh
-MEMCS16	The Memory Chip Select 16 indicates that the present
[Input, Open collector]	data transfer is a 1-wait state, 16-bit data memory operation
-IOCS16	The I/O Chip Select 16 indicates that the present data
[Input, Open collector]	transfer is a 1-wait state, 16-bit data I/O operation
OSC [Output]	The Oscillator is a 14.31818 MHz signal
zws	The Zero Wait State indicates to the microprocessor
[Input, Open collector]	that the present bus cycle can be completed without
[input, Open collector]	inserting additional wait cycle

Table 2-5 I/O Channel Signal Description

2.3.4 Real-Time Clock and Non-Volatile RAM

The AR-B1579 contains a real-time clock component that maintains the date and time in addition to storing configuration information about the computer system. It contains 14 bytes of clock and control registers and 114 bytes of general purpose RAM. Because of using CMOS technology, it consumes very little power and can be maintained for long period of time using an internal Lithium battery. The contents of each byte in the CMOS RAM are listed as follows:

Address	Description	
00	Seconds	
01	Second alarm	
02	Minutes	
03	Minute alarm	
04	Hours	
05	Hour alarm	
06	Day of week	
07	Date of month	
08	Month	
09	Year	
0A	Status register A	
0B	Status register B	
0C	Status register C	
0D	Status register D	
0E	Diagnostic status byte	
0F	Shutdown status byte	
10	Diskette drive type byte, drive A and B	
11	Fixed disk type byte, drive C	
12	Fixed disk type byte, drive D	
13	Reserved	
14	Equipment byte	
15	Low base memory byte	
16	High base memory byte	
17	Low expansion memory byte	
18	High expansion memory byte	
19-2D	Reserved	
2E-2F	2-byte CMOS checksum	
30	Low actual expansion memory byte	
31	High actual expansion memory byte	
32	Date century byte	
33	Information flags (set during power on)	
34-7F	Reserved for system BIOS	

Table 2-6 Real-Time Clock & Non-Volatile RAM

2.3.5 Timer

The AR-B1579 provides three programmable timers, each with a timing frequency of 1.19 MHz.

- Timer 0 The output of this timer is tied to interrupt request 0. (IRQ 0)
- Timer 1 This timer is used to trigger memory refresh cycles.
- Timer 2This timer provides the speaker tone.Application programs can load different counts into this timer to generate various sound frequencies.

2.4 SERIAL PORT

The ACEs (Asynchronous Communication Elements ACE1 to ACE4) are used to convert parallel data to a serial format on the transmit side and convert serial data to parallel on the receiver side. The serial format, in order of transmission and reception, is a start bit, followed by five to eight data bits, a parity bit (if programmed) and one, one and half (five-bit format only) or two stop bits. The ACEs are capable of handling divisors of 1 to 65535, and produce a 16x clock for driving the internal transmitter logic.

Provisions are also included to use this 16x clock to drive the receiver logic. Also included in the ACE a completed MODEM control capability, and a processor interrupt system that may be software tailored to the computing time required handle the communications link.

DLAB	Port Address	Register
0	base + 0	Receiver buffer (read)
		Transmitter holding register (write)
0	base + 1	Interrupt enable
Х	base + 2	Interrupt identification (read only)
Х	base + 3	Line control
Х	base + 4	MODEM control
Х	base + 5	Line status
Х	base + 6	MODEM status
Х	base + 7	Scratched register
1	base + 0	Divisor latch (least significant byte)
1	base + 1	Divisor latch (most significant byte)

The following table is summary of each ACE accessible register

Table 2-7 ACE Accessible Registers

(1) Receiver Buffer Register (RBR)

Bit 0-7: Received data byte (Read Only)

(2) Transmitter Holding Register (THR)

Bit 0-7: Transmitter holding data byte (Write Only)

(3) Interrupt Enable Register (IER)

- Bit 0: Enable Received Data Available Interrupt (ERBFI)
- Bit 1: Enable Transmitter Holding Empty Interrupt (ETBEI)
- Bit 2: Enable Receiver Line Status Interrupt (ELSI)
- Bit 3: Enable MODEM Status Interrupt (EDSSI)
- Bit 4: Must be 0
- Bit 5: Must be 0
- Bit 6: Must be 0
- Bit 7: Must be 0

(4) Interrupt Identification Register (IIR)

- Bit 0: "0" if Interrupt Pending
- Bit 1: Interrupt ID Bit 0
- Bit 2: Interrupt ID Bit 1
- Bit 3: Must be 0
- Bit 4: Must be 0 Bit 5: Must be 0
- Bit 6: Must be 0
- Bit 7: Must be 0

(5) Line Control Register (LCR)

Bit 0: Word Length Select Bit 0 (WLS0) Bit 1: Word Length Select Bit 1 (WLS1)

WLS1	WLS0	Word Length		
0	0	5 Bits		
0	1	6 Bits		
1	0	7 Bits		
1	1	8 Bits		
Bit 2: Number of Stop Bit (STB) Bit 3: Parity Enable (PEN) Bit 4: Even Parity Select (EPS) Bit 5: Stick Parity Bit 6: Set Break Bit 7: Divisor Latch Access Bit (DLAB)				

(6) MODEM Control Register (MCR)

Bit 0: Data Terminal Ready (DTR) Bit 1: Request to Send (RTS) Bit 2: Out 1 (OUT 1) Bit 3: Out 2 (OUT 2) Bit 4: Loop Bit 5: Must be 0 Bit 6: Must be 0 Bit 7: Must be 0

(7) Line Status Register (LSR)

Bit 0: Data Ready (DR) Bit 1: Overrun Error (OR) Bit 2: Parity Error (PE) Bit 3: Framing Error (FE) Bit 4: Break Interrupt (BI) Bit 5: Transmitter Holding Register Empty (THRE) Bit 6: Transmitter Shift Register Empty (TSRE) Bit 7: Must be 0

(8) MODEM Status Register (MSR)

- Bit 0: Delta Clear to Send (DCTS)
- Bit 1: Delta Data Set Ready (DDSR)
- Bit 2: Training Edge Ring Indicator (TERI)
- Bit 3: Delta Receive Line Signal Detect (DSLSD)
- Bit 4: Clear to Send (CTS)
- Bit 5: Data Set Ready (DSR)
- Bit 6: Ring Indicator (RI)
- Bit 7: Received Line Signal Detect (RSLD)

(9) Divisor Latch (LS, MS)

	LS	MS
Bit 0:	Bit 0	Bit 8
Bit 1:	Bit 1	Bit 9
Bit 2:	Bit 2	Bit 10
Bit 3:	Bit 3	Bit 11
Bit 4:	Bit 4	Bit 12
Bit 5:	Bit 5	Bit 13
Bit 6:	Bit 6	Bit 14
Bit 7:	Bit 7	Bit 15

Desired Baud Rate	Divisor Used to Generate 16x Clock
300	384
600	192
1200	96
1800	64
2400	48
3600	32
4800	24
9600	12
14400	8
19200	6
28800	4
38400	3
57600	2
115200	1

Table 2-8 Serial Port Divisor Latch

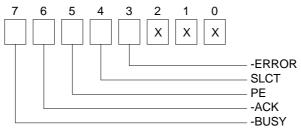
2.5 PARALLEL PORT

(1) Register Address

Port Address	Read/Write	Register
base + 0	Write	Output data
base + 0	Read	Input data
base + 1	Read	Printer status buffer
base + 2	Write	Printer control latch

Table 2-9 Registers' Address

(2) Printer Interface Logic

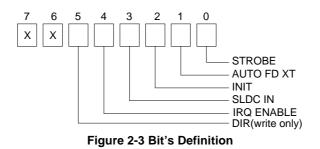

The parallel portion of the SMC37C669 makes the attachment of various devices that accept eight bits of parallel data at standard TTL level.

(3) Data Swapper

The system microprocessor can read the contents of the printer's Data Latch through the Data Swapper by reading the Data Swapper address.

(4) Printer Status Buffer

The system microprocessor can read the printer status by reading the address of the Printer Status Buffer. The bit definitions are described as follows:



NOTE: X presents not used.

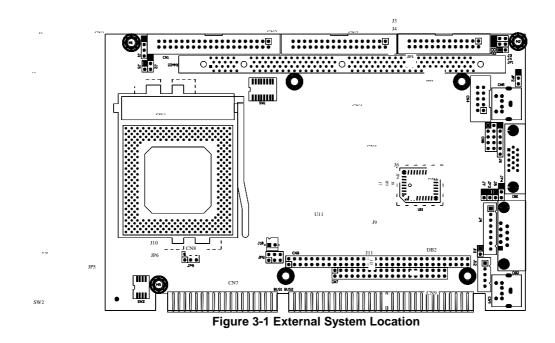
- Bit 7: This signal may become active during data entry, when the printer is off-line during printing, or when the print head is changing position or in an error state. When Bit 7 is active, the printer is busy and can not accept data.
- Bit 6: This bit represents the current state of the printer's ACK signal. A0 means the printer has received the character and is ready to accept another. Normally, this signal will be active for approximately 5 microseconds before receiving a BUSY message stops.
- Bit 5: A1 means the printer has detected the end of the paper.
- Bit 4: A1 means the printer is selected.
- Bit 3: A0 means the printer has encountered an error condition.

(5) Printer Control Latch & Printer Control Swapper

The system microprocessor can read the contents of the printer control latch by reading the address of printer control swapper. Bit definitions are as follows:

NOTE: X presents not used.

- Bit 5: Direction control bit. When logic 1, the output buffers in the parallel port are disabled allowing data driven from external sources to be read; when logic 0, they work as a printer port. This bit is write only.
- Bit 4: A1 in this position allows an interrupt to occur when ACK changes from low state to high state.
- Bit 3: A1 in this bit position selects the printer.
- Bit 2: A0 starts the printer (50 microseconds pulse, minimum).
- Bit 1: A1 causes the printer to line-feed after a line is printed.
- Bit 0: A0.5 microsecond minimum highly active pulse clocks data into the printer. Valid data must be present for a minimum of 0.5 microseconds before and after the strobe pulse.


3. SETTING UP THE SYSTEM

This chapter describes pin assignments for the system's external connectors and jumpers setting.

- Overview
- System Setting

3.1 OVERVIEW

The AR-B1579 is Pentium single CPU board. This section provides hardware's jumpers settings, connectors' locations, and the pin assignments.

3.2 SYSTEM SETTING

Jumper pins allow you to set specific system parameters. Set them by changing the pin location of jumper blocks. (A jumper block is a small plastic-encased conductor [shorting plug] that slips over the pins.) To change a jumper setting, remove the jumper from its current location with your fingers or small needle-nosed pliers. Place the jumper over the two pins designated for the desired setting. Press the jumper evenly onto the pins. Be careful not to bend the pins.

We will show the locations of the AR-B1579 jumper pins, and the factory-default setting.

CAUTION: Do not touch any electronic component unless you are safely grounded. Wear a grounded wrist strap or touch an exposed metal part of the system unit chassis. The static discharges from your fingers can permanently damage electronic components.

3.2.1 CRT CONNECTOR (DB1)

The AR-B1579 supports CRT color monitors. It can be connected to create a compact video solution for the industrial environment. It allows a maximum CRT resolution of 1024X768. For different VGA display modes, your monitor must possess certain characteristics to display the mode you want.

To connect to a CRT monitor, an adapter cable has to be connected to the DB1 connector. DB1 is used to connect with a VGA monitor when you are using the on-board VGA controller as a display adapter. Pin assignments for the DB1 connector are as follows:

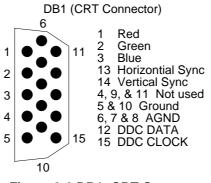


Figure 3-2 DB1: CRT Connector

3.2.2 Watchdog Transferring Select (JP6)

JP6

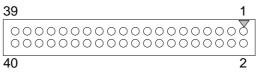

Standard Mode (Factroy Preset) AR-B1579 Default Communication Mode

Figure 3-3 JP6: Watchdog Transferring Select

3.2.3 Hard Disk (IDE) Connector

40-Pin Hard Disk (IDE) Connector (CN1)

A 40-pin header type connector (CN1) is provided to interface with up to two embedded hard disk drives (IDE AT bus). This interface, through a 40-pin cable, allows the user to connect up to two drives in a "daisy chain" fashion. To enable or disable the hard disk controller, please use the BIOS Setup program. The following table illustrates the pin assignments of the hard disk drive's 40-pin connector.

Pin	Signal	Pin	Signal
1	-RESET	2	GROUND
3	DATA 7	4	DATA 8
5	DATA 6	6	DATA 9
7	DATA 5	8	DATA 10
9	DATA 4	10	DATA 11
11	DATA 3	12	DATA 12
13	DATA 2	14	DATA 13
15	DATA 1	16	DATA 14
17	DATA 0	18	DATA 15
19	GROUND	20	NOT USED
21	IDEDRQA	22	GROUND
23	-IOW A	24	GROUND
25	-IOR A	26	GROUND
27	-CHRDY A	28	GROUND
29	DACKA	30	GROUND
31	-IRQ 14	32	NOT USED
33	SA 1	34	NOT USED
35	SA 0	36	SA 2
37	CS 0	38	CS 1
39	HD LED A	40	NOT USED

Figure 3-4 CN1: Hard Disk (IDE) Connector

Table 3-1 CN1: Hard Disk (IDE) Connector

3.2.4 PC/104 Connector

(1) 64-Pin PC/104 Connector Bus A & B (CN8)

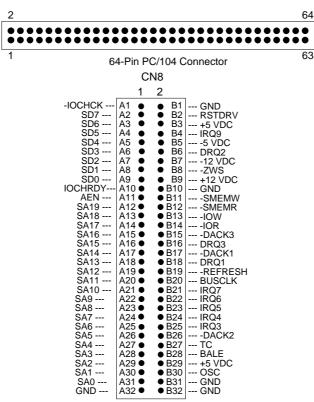


Figure 3-5 CN8: 64-Pin PC/104 Connector Bus A & B

(2) 40-Pin PC/104 Connector Bus C & D (CN7)

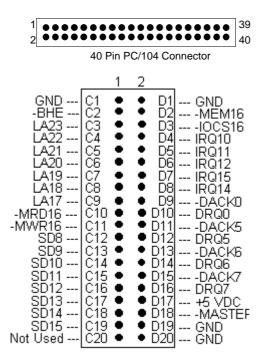


Figure 3-6 CN7: 40-Pin PC/104 Connector Bus C & D

(3) I/O Channel Signal Description

Name	Description
BUSCLK [Output]	The BUSCLK signal of the I/O channel is asynchronous to the CPU clock.
RSTDRV [Output]	This signal goes high during power-up, low line-voltage or hardware reset
SA0 - SA19	The System Address lines run from bit 0 to 19. They are
	latched onto the falling edge of "BALE"
LA17 - LA23	The Unlatched Address line run from bit 17 to 23
[Input/Output]	
SD0 - SD15	System Data bit 0 to 15
[Input/Output]	
BALE [Output]	The Buffered Address Latch Enable is used to latch SA0
	- SA19 onto the falling edge. This signal is forced high
	during DMA cycles
-IOCHCK [Input]	The I/O Channel Check is an active low signal which
	indicates that a parity error exist on the I/O board
IOCHRDY [Input, Open collector]	This signal lengthens the I/O, or memory read/write cycle, and should be held low with a valid address
IRQ 3-7, 9-12, 14, 15	The Interrupt Request signal indicates I/O service
	request attention. They are prioritized in the following
[bar]	sequence : (Highest) IRQ 9, 10, 11, 12, 13, 15, 3, 4, 5,
	6, 7 (Lowest)
-IOR	The I/O Read signal is an active low signal which
[Input/Output]	instructs the I/O device to drive its data onto the data bus
-IOW [Input/Output]	
	The I/O write signal is an active low signal which instructs the I/O device to read data from the data bus
-SMEMR [Output]	The System Memory Read is low while any of the low 1
•[•	mega bytes of memory are being used
-MEMR	The Memory Read signal is low while any memory
[Input/Output]	location is being read
-SMEMW [Output]	The System Memory Write is low while any of the low 1
	mega bytes of memory is being written
-MEMW	The Memory Write signal is low while any memory
[Input/Output]	location is being written
DRQ 0-3, 5-7 [Input]	DMA Request channels 0 to 3 are for 8-bit data
	transfers. DMA Request channels 5 to 7 are for 16-bit
	data transfers. DMA request should be held high until
	the corresponding DMA has been completed. DMA
	request priority is in the following sequence:(Highest)
	DRQ 0, 1, 2, 3, 5, 6, 7 (Lowest)
-DACK 0-3, 5-7	The DMA Acknowledges 0 to 3, 5 to 7 are the
[Output]	corresponding acknowledge signals for DRQ 0 to 3 and
	5 to 7
AEN [output]	The DMA Address Enable is high when the DMA
	controller is driving the address bus. It is low when the
	CPU is driving the address bus
-REFRESH	This signal is used to indicate a memory refresh cycle
-	and can be driven by the microprocessor on the I/O
[]	channel
TC [Output]	Terminal Count provides a pulse when the terminal
_	count for any DMA channel is reached

Name	Description
SBHE [Input/Output]	The System Bus High Enable indicates the high byte
	SD8 - SD15 on the data bus
-MASTER [Input]	The MASTER is the signal from the I/O processor which
	gains control as the master and should be held low for a
	maximum of 15 microseconds or system memory may
	be lost due to the lack of refresh
-MEMCS16	The Memory Chip Select 16 indicates that the present
[Input, Open collector]	data transfer is a 1-wait state, 16-bit data memory
	operation
-IOCS16	The I/O Chip Select 16 indicates that the present data
[Input, Open collector]	transfer is a 1-wait state, 16-bit data I/O operation
OSC [Output]	The Oscillator is a 14.31818 MHz signal used for the
	color graphic card
-ZWS	The Zero Wait State indicates to the microprocessor
[Input, Open collector]	that the present bus cycle can be completed without
	inserting additional wait cycle

Table 3-2 I/O Channel Signal Description

3.2.5 Keyboard Connector

(1) Keyboard Lock Header (J7)

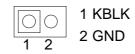


Figure 3-7 J7: Keyboard Lock Header

(2) 6-Pin Mini DIN Keyboard Connector (CN9)

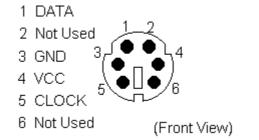


Figure 3-8 CN9: 6-Pin Mini DIN Keyboard Connector

(3) AUX. Keyboard Connector (J12)

A PC/AT compatible keyboard can be used by connected the provided adapter cable between J12 and the keyboard. The pin assignments of J12 connector are as follows:

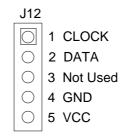
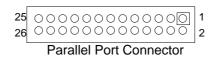


Figure 3-9 J12: AUX. Keyboard Connector

3.2.6 FDD Port Connector (CN2)

The AR-B1579 provides a 34-pin header type connector for supporting up to two floppy disk drives.

To enable or disable the floppy disk controller, please use the BIOS Setup program.


Figure 3-10 CN2: FDD Port connector

Pin	Signal	Pin	Signal
1-33(odd)	GROUND	18	DIRECTION
2	DRVEN 0	20	-STEP OUTPUT PULSE
4	NOT USED	22	-WRITE DATA
6	DRVEN 1	24	-WRITE GATE
8	-INDEX	26	-TRACK 0
10	-MOTOR ENABLE 0	28	-WRITE PROTECT
12	-DRIVE SELECT 1	30	-READ DATA
14	-DRIVE SELECT 0	32	-SIDE 1 SELECT
16	-MOTOR ENABLE 1	34	DISK CHANGE

Table 3-3 FDD Pin Assignment

3.2.7 Parallel Port Connector (CN3)

To use the parallel port, an adapter cable has to be connected to the CN3 (26-pin header type) connector. This adapter cable is mounted on a bracket and is included in your AR-B1579 package. The connector for the parallel port is a 25 pin D-type female connector.

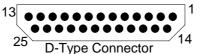
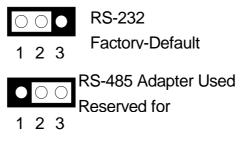


Figure 3-11 CN3: Parallel Port Connector

CN3	DB-25	Signal	CN3	DB-25	Signal
1	1	-Strobe	2	14	-Auto Form Feed
3	2	Data 0	4	15	-Error
5	3	Data 1	6	16	-Initialize
7	4	Data 2	8	17	-Printer Select In
9	5	Data 3	10	18	Ground
11	6	Data 4	12	19	Ground
13	7	Data 5	14	20	Ground
15	8	Data 6	16	21	Ground
17	9	Data 7	18	22	Ground
19	10	-Acknowledge	20	23	Ground
21	11	Busy	22	24	Ground
23	12	Paper	24	25	Ground
25	13	Printer Select	26		No Connect


Table 3-4 Parallel Port Pin Assignments

3.2.8 Serial Port

(1) RS-232/RS-485 Select (JP1, JP4 & SW1-8)

JP1 selects COM B port, and adjusts the CN3 connector is RS-485 or RS-232C. JP4 selects COM A port for using DB2 for RS-232C or connects External RS-485. SW1-8 adjusts the onboard RS-485.

(A) COM-A RS-485 Adapter Select (JP4)

(B) COM-B RS-485 Adapter Select (JP2)

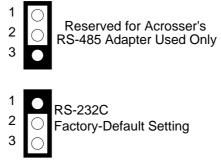
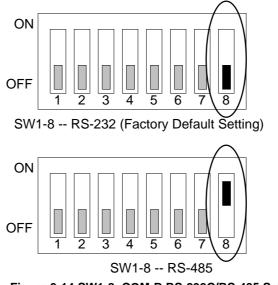



Figure 3-13 JP2: COM-B RS-485 Adapter Select

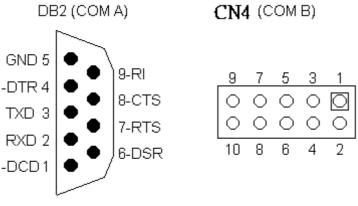
(C) COM-B RS-232C/RS-485 Select (SW1-8)

(2) RS-485 Terminator Select (JP1)

Figure 3-15 JP1: RS-485 Terminator Select

(3) RS-485 Header (J4)

J4 is onboard RS-485 header, J4 pin assignments are as follows:



J4 (COM B)

Figure 3-16 J4: RS-485 Connector

(4) RS-232 Connector (CN4 & DB2)

There are two serial ports with EIA RS-232C interface on the AR-B1579. COM A uses one onboard D-type 9-pin male connector (DB2) and COM B uses one 10-pin header (CN4) which are located at the right side of the card. To configure these two serial ports, use the BIOS Setup program, and adjust the jumpers on JP1 and JP4. The pin assignments of the DB2 and CN4 for serial port A & B are as follows:

Figure 3-17 DB2 & CN4: RS-232 Connector

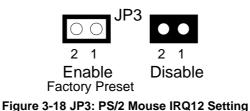

CN3	DB2	Signal	CN3	DB2	Signal
1	1	-DCD	2	6	-DSR
3	2	RXD	4	7	-RTS
5	3	TXD	6	8	-CTS
7	4	-DTR	8	9	-RI
9	5	GND	10		Not Used

Table 3-5 RS-232 Connector Pin Assignment

3.2.9 PS/2 Mouse Connector

(1) PS/2 Mouse IRQ12 Setting (JP3)

The default of <Enabled> allows the system detecting a PS/2 mouse on boot. If detected, IRQ12 will be used for the PS/2 mouse. IRQ12 will be reserved for expansion cards and therefore the PS/2 mouse will not function.

CAUTION: After adjusting the JP2 correctly, the user must set the <PS/2 Mouse Support> option to Enabled in the BIOS <Advanced CMOS Setup> Menu. Then the PS/2 mouse can be used.

(2) PS/2 Mouse Connector (CN5 & J6)

To use the PS/2 interface, an adapter cable has to be connected to the J6 (6-pin header type) connector. This adapter cable is mounted on a bracket and is included in your AR-B1579 package. The connector for the PS/2 mouse is a Mini-DIN 6-pin connector. Pin assignments for the PS/2 port connector are as follows:

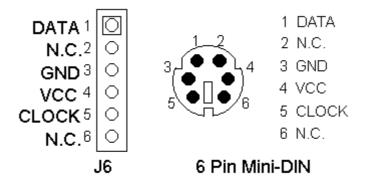


Figure 3-19 CN5 & J6: PS/2 Mouse Connector

3.2.10 External Speaker Header (J1)

Besides the onboard buzzer, you can use an external speaker by connecting to the J1 header.

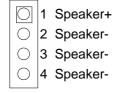


Figure 3-20 J1: Speaker Header

3.2.11 Reset Header (J8)

J8 is used to connect to an external reset switch. Shorting these two pins will reset the system.

	1 Reset+
	2 Reset-
12	2 110301

Figure 3-21 J8: Reset Header

3.2.12 Power Connector (J9)

J9 is an 8-pin power connector. You can directly connect the power supply to the onboard power connector for stand-alone applications.

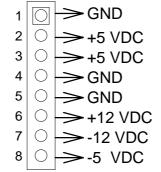


Figure 3-22 J9: Power Connector

3.2.13 LED Header

(1) External Power LED Header (J3)

			1
\Box	$ \bigcirc$	\bigcirc	2
1	2	3	3

1 Power LED+ 2 Not Used

3 Power LED-

Figure 3-23 J3: Power LED Header

(2) HDD LED Header for IDE0 (J5)

\bigcirc	1 LED-
0	2 LED+

Figure 3-24 J5: HDD LED Header for IDE0

(3) Watchdog LED Header (J11)

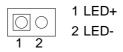


Figure 3-25 J11: Watchdog LED Header

3.2.14 CPU Setting

The AR-B1579 accepts many types of 586 microprocessors such as Intel Pentium, AMD K5 & AMD K6, and Cyrix 6X86. All of these CPUs include an integer processing unit, floating-point processing unit, memory-management unit, and cache. They can give a two to ten-fold performance improvement in speed over the 486 processor, depending on the clock speeds used and specific application. Like the 486 processor, the 586 processor includes both segment-based and page-based memory protection schemes. Instruction of processing time is reduced by on-chip instruction pipelining. By performing quickly, on-chip memory management and caching, the 586 processor relaxes requirements for memory response for a given level of system performance.

A. System Base Clock & CPU Clock Multiplier (SW1)

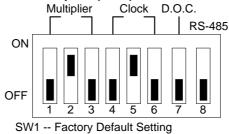


Figure 3-26 SW1: CPU Clock Multiplier

(1) CPU Base Clock Select (SW1)

This board supports different types of CPUs. The clock generator needs to be set by SW1. The CPU input clock is twice the operation clock.

SW1-4	SW1-5	SW1-6	Base Clock	PCI Clock	Multiplier Clock D.O.C.
ON	ON	OFF	50MHz	25MHz	ON
OFF	ON	OFF	66.6MHz	33.3MHz	
ON	OFF	OFF	60MHz	30MHz	
OFF	OFF	OFF	55MHz	27.5MHz	
OFF	OFF	ON	75MHz	37.5MHz	1 2 3 4 3 0 7 0

Table 3-6 SW1: CPU Clock Multiplier

(2) CPU Clock Multiplier Select (SW1)

The CPU clock multiplier needs to be set by SW1.

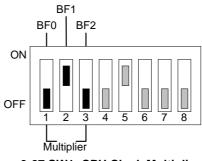
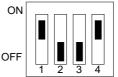



Figure 3-27 SW1: CPU Clock Multiplier

- **NOTE:** 1. SW1 jumper setting BF0-BF2: On presents Low, Off presents High.
 - 2. Intel CPU MMX 200 is factory default setting.

B. CPU Logic Core Voltage Select (SW2)

SW2 -- Factory Default Setting

Figur	Figure 3-28 SW2: CPU Logic Core Voltage								
SW2-1	SW2-2	SW2-3	SW2-4	Voltage					
OFF	ON	OFF	OFF	2.16V					
ON	ON	OFF	OFF	2.26V					
ON	OFF	OFF	ON	2.86V					
OFF	ON	OFF	ON	2.96V					
OFF	ON	ON	ON	3.36V					
ON	ON	ON	ON	3.46V					

Table 3-7 SW2: CPU Logic Core Voltage

C. CPU Cooling Fan Power Connector (J10)

Figure 3-29 J10: CPU Cooling Fan Power Connector

D. P54C/P55C CPU Type Select (JP5)

Intel Pentium AMD K5 Cyrix 6x86 IDT Winchip C6

Figure 3-30 JP5: P55C/P54C CPU Type Select

Intel CPU

CPU Type	Work	SI	V1	SW1-1	SW1-2	SW1-3	SW2
	Frequency	Clock	Multiplier	BF0	BF1	BF2	
Pentium - 75	75MHz	50.0MHz	1.5X	Off	Off	Off	3.36V
Pentium - 90	90MHz	60.0MHz	1.5X	Off	Off	Off	
Pentium - 100	100MHz	66.7MHz	1.5X	Off	Off	Off	
Pentium - 120	120MHz	60.0MHz	2.0X	On	Off	Off	
Pentium - 133	133MHz	66.7MHz	2.0X	On	Off	Off	
Pentium - 150	150MHz	60.0MHz	2.5X	On	On	Off	
Pentium - 166	166MHz	66.7MHz	2.5X	On	On	Off	
Pentium - 200	200MHz	66.7MHz	3.0X	Off	On	Off	
MMX-166	166MHz	66.7MHz	2.5X	On	On	Off	2.86V
MMX-200	200MHz	66.7MHz	3.0X	Off	On	Off	
MMX-233	233MHz	66.7MHz	3.5X	Off	Off	Off	

Table 3-8 Intel CPU Base Clock Setting

NOTE: 1. SW1 jumper setting – BF0-BF2: On presents Low, Off presents High.

2. Intel CPU MMX - 200 is factory default setting.

AMD CPU							
CPU Type	Work			SW1-1	SW1-2	SW1-3	SW2
	Frequency	Clock	Multiplier	BF0	BF1	BF2	
K5-PR75 (ABR)	75MHz	50.0MHz	1.5X	Off	Off	Off	3.46V
K5-PR90 (ABR)	90MHz	60.0MHz	1.5X	Off	Off	Off	
K5-PR100 (ABR)	100MHz	66.7MHz	1.5X	Off	Off	Off	
K5-PR120 (ABR)	90MHz	60.0MHz	1.5X	On	Off	Off	
K5-PR133 (ABR)	100MHz	66.7MHz	1.5X	On	Off	Off	
K5-PR166 (ABR)	116.7MHz	66.7MHz	1.75X	On	On	Off	
K5-PR75 (AFR)	75MHz	50.0MHz	1.5X	Off	Off	Off	3.36V
K5-PR90 (AFR)	90MHz	60.0MHz	1.5X	Off	Off	Off	
K5-PR100 (AFR)	100MHz	66.7MHz	1.5X	Off	Off	Off	
K5-PR120 (AFR)	90MHz	60.0MHz	1.5X	On	Off	Off	
K5-PR133 (AFR)	100MHz	66.7MHz	1.5X	On	Off	Off	
K5-PR166 (AFR)	116.7MHz	66.7MHz	1.75X	On	On	Off	
K6-166 (MIMX)(ANR)	166MHz	66.7MHz	2.5X	On	On	Off	2.96V
K6-200 (MIMX)(ANR)	200MHz	66.7MHz	3.0X	Off	On	Off	
K6-233 (MIMX)(ANR)	233MHz	66.7MHz	3.5X	Off	Off	Off	3.36V
K6-2-300	300MHz	66.7MHz	4.5X	On	On	On	2.26V
K6-2-333	333MHz	66.7MHz	5.0X	Off	On	On	

Table 3-9 AMD CPU Base Clock Setting

Cyrix CPU

CPU Type			V1	SW1-1	SW1-2	SW1-3	SW2
	Frequency	Clock	Multiplier	BF0	BF1	BF2	
6X86-PR100	80MHz	40.0MHz	2.0X	On	Off	Off	3.36V
6X86-PR120	100MHz	50.0MHz	2.0X	On	Off	Off	
6X86-PR133	110MHz	55.0MHz	2.0X	On	Off	Off	
6X86-PR150	120MHz	60.0MHz	2.0X	On	Off	Off	
6X86-PR166	133MHz	66.7MHz	2.0X	On	Off	Off	
6X86-PR200	150MHz	75.0MHz	2.0X	On	Off	Off	
6X86L-PR120	100MHz	50.0MHz	2.0X	On	Off	Off	2.86V
6X86L-PR133	110MHz	55.0MHz	2.0X	On	Off	Off	
6X86L-PR150	120MHz	60.0MHz	2.0X	On	Off	Off	
6X86L-PR166	133MHz	66.7MHz	2.0X	On	Off	Off	
6X86L-PR200	150MHz	75.0MHz	2.0X	On	Off	Off	
6X86-PR166 (MMX)	150/133MHz	60/66.7MHz	2.5/2.0X	On	On/Off	Off	2.96V
6X86-PR200 (MMX)	166/150MHz	66.7/75MHz	2.5/2.0X	On	Off/On	Off	
6X86-PR233 (MMX)	187.5/200MHz	75/66.7MHz	2.5/3.0X	Off/On	On	Off	
6X86-PR300 (MMX)	233MHz	66.7MHz	3.5X	Off	Off	Off	

Table 3-10 Cyrix CPU Base Clock Setting

IDT Winchip CPU

CPU Type	Work	SV	V1	SW1-1	SW1-2	SW1-3	SW2
	Frequency	Clock	Multiplier	BF0	BF1	BF2	
IDT C6-180	180MHz	60.0MHz	3.0X	Off	On	Off	3.46V
IDT C6-200	200MHz	66.7MHz	3.0X	Off	On	Off	
IDT C6-225	225MHz	75.0MHz	3.0X	Off	On	Off	
IDT C6-240	240MHz	60.0MHz	4.0X	On	Off	On	

Table 3-11 IDT Winchip CPU Base Clock Setting

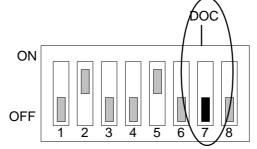
NOTE: 1. SW1 jumper setting – BF0-BF2: On presents Low, Off presents High.

2. Intel CPU MMX - 200 is factory default setting.

3.2.15 DRAM Configuration

It can assemble 16/32/64/128MB 168 pin DIMM Module Memory. When you set up 168-pin DIMM Module Memory, AR-B1579 will auto-detect DRAM, and adopt correct save order to make memory work till the best situation.

Caution: Set up 168-pin DIMM Module Memory, please insert into slot vertical, if the direction is wrong and it leads to failure, please confirm the direction is right.


3.2.16 D.O.C. Memory Address Select (SW1-7)

This section provides the information about how to use the D.O.C. (DiskOnChip). There divided two parts: hardware setting and software configuration.

Step 1: Use SW1-7 to select the correct D.O.C. memory address.

Step 2: Insert programmed DiskOnChip into sockets U10 setting as DOC.

Step 3: Line up and insert the AR-B1579 card into any free slot of your computer.

SW1-7 -- D.O.C. Memory Address (Factory Default Setting)

Figure 3-31 SW1-7: D.O.C. Memory Address

SW1-7	Address	Note		
OFF	D400 : 0000	Factory Preset		
ON	D000 : 0000			

Table 3-12 D.O.C. Memory Address

4. INSTALLATION

This chapter describes the procedure of the utility diskette installation. The following topics are covered:

- Overview
- Utility Diskette
- Watchdog Timer

4.1 OVERVIEW

This chapter provides information for you to set up a working system based on the AR-B1579 CPU card. Please read the details of the CPU card's hardware descriptions before installation carefully, especially jumper settings and cable connections.

Follow steps listed below for proper installation:

- Step 1: Read the CPU card's hardware description in this manual.
- Step 2: Install any DRAM SIMM onto the CPU card.
- Step 3 : Set jumpers.
- Step 4: Make sure that the power supply connected to your passive backplane is turned off.
- **Step 5**: Plug the CPU card into a free AT-bus slot on the backplane and secure it in place with a screw to the system chassis.
- **Step 6 :** Connect all necessary cables. Make sure that the FDC, HDC, serial and parallel cables are connected to pin 1 of the related connector.
- **Step 7 :** Connect the hard disk/floppy disk flat cables from the CPU card to the drives. Connect a power source to each drive.
- Step 8: Plug the keyboard into the keyboard connector.
- Step 9: Turn on the power.
- Step 10: Configure your system with the BIOS Setup program then re-boot your system.
- Step 11: If the CPU card does not work, turn off the power and read the hardware description carefully again.
- Step 12: If the CPU card still does not perform properly, return the card to your dealer for immediate service.

4.2 UTILITY DISKETTE

AR-B1579 provides three VGA driver diskettes, supports WIN31, WIN95, WINNT3.5, WINNT 4.0 and OS/2 WARP 3.0.

There are three diskettes: disk 1 is for WIN31; disk 2 is for WIN95 & IDE driver; disk 3 is for WINNT 3.5, WINNT 4.0 & OS/2. The utility disk attaches the README.DOC file, and after extracting the compressed files, including the README.TXT file in the decompressed sub-directories. Please refer to the README.TXT file for any troubleshooting before driver installation.

4.2.1 WIN 3.1 Driver

For the WIN31 operating system, the user must be in DOS mode to decompress the compressed file.

- Step 1: Make a new directory to contain the VGA drivers. C: >>MD VGAW31
- Step 2: Insert the Utility Disk #1 in the floppy disk drive, and then copy the compressed file—WIN31DRV.EXE, and the file is self-extraction program. User can copy the file and execute the file in DOS mode. C: \>COPY A: \WI N31DRV. EXE C: \VGAW31
- Step 3:
 Change directory to the newly created directory, and extract the compressed file. User can find there are many files and one <windows> direction generated.

 C: \>CD VGAW31

 C: \VGAW31>WI N31DRV
- Step 4: In WIN31 mode execute the SETUP.EXE file. It generates the SETUP MENU. C: \VGAW31>SETUP
- Step 5: The screen shows SETUP TYPE window for choosing the three modes: <Typical>, <Compact>, <Custom>, and we can find the <Typical> mode is default setting, please change the setting mode to <Custom>. It is necessary to choose the <Custom> mode, and click [Next] button to enter the next setup step.
- **Step 6:** Please only choose the <SVGA> item, the default setting is selected all items, so user has to change the selecting item, and then click [Next] button.
- **Step 7:** Follow the setup steps' messages. As completed the setup procedure will generate the <Setup is complete> message and the <SiS Multimedia V1.07> program folder. And in the program folder user can find only one <uninstall> icon.
- Step 8: In <Main Group> program folder, the <Windows setting> item we can find the <Display> item will appear <SiS 5597/5598 640x480 256 colors>, and other SiS 5597/5598 resolution, colors, font size, and so on. User can adjust the item for the VGA mode in WIN31.

4.2.2 WIN 95 Driver

For the WIN95 operating system, user must be in DOS mode to decompress the compressed file. And then setup step by step:

Step 1: Make a new directory to contain the VGA drivers. C: \>MD VGAW95 Step 2: Insert the Utility Disk #2 in the floppy disk drive, and then copy the compressed file-WIN95DRV.EXE in the new created directory. C: \>COPY A: \WI N95DRV. EXE C: \VGAW95 Step 3: Change directory to the newly created directory, and extract the compressed file. C: \>CD VGAW95 C: \VGAW95>WI N95DRV Step 4: Enter the WIN95 operating system, please choose the <SETTING> item of the <DISPLAY> icon in the {CONTROL PANEL}. Please select the <From Disk Install> item, and type the factory source files' path. C:\VGAW95 Step 5: Find the <SiS 5597/5598> item to select and click the <OK> button. Step 6: Finally, find the <SETIING> item in the <DISPLAY> icon. You can select this item, and adjust the <Screen Resolution>, ...and other functions. Please refer to the messages during installation. CAUTION: If you decompress files in the newly created directory, you can find the README file, it describes detailed installation information.

4.2.3 WINNT Driver

In the WINNT3.5 or WINNT4.0 operating system, the user must extract the compress files in DOS mode. And then setup step by step:

- Step 1:
 Make a new directory to contain the VGA drivers.

 C: \>MD
 VGANTXX
- Step 2: Insert the Utility Disk #3 in the floppy disk drive, and then copy the compressed file—NTXXDRV.EXE in the new directory.

C: \>COPY A: \NTXXDRV. EXE C: \VGANTXX

- Step 3: Change directory to the new directory, and extract the compressed file. C: \>CD VGANTXX C: \VGANTXX>NTXXDRV
- Step 4: In the WINNTXX operating system, choose the <SETTING> item of the <DISPLAY> icon in the {CONTROL PANEL}. Please select the <From Disk Install> item, and type the factory source files' path. C: \VGANTXX
- Step 5: Find the <SiS 5597/5598> item to select it and click the <OK> button.
- **Step 6:** Find the <SETTING> item in the <DISPLAY> icon, can adjust the <Screen Resolution>, ...and other function. Please refer to the messages during installation.

4.2.4 OS/2 Warp 3.0 Driver

The following steps must be performed before you install the SiS 5597/5598 display driver:

CAUTION: 1. OS/2 DOS Support must be installed.

2. If you previously installed SVGA support, you must do the following:

- a) Close all DOS Full Screen and WIN-OS2 sessions.
 - b) Reset the system to VGA mode. VGA is the default video mode enabled when OS/2 is installed. To restore VGA mode, use Selective Install and select VGA for Primary Display. For more information on this procedure, see the section on Changing Display Adapter Support in the OS/2 Users Guide.

To install this driver, do the following steps:

- **Step 1:** Open an OS/2 full screen or windowed session.
- Step 2: Place the SiS 5597/5598 Display Driver Diskette in drive A. (DISK #3)
- Step 3: Because the diskette enclosed a compressed file, and then extracted it with the following steps.
- Step 4:
 In the OS/2-DOS mode, make a VGA directory for decompressing the driver.

 C: \>MD VGA0S2

 C: \>CD VGA0S2

 C: \VGA0S2>COPY A: \0S2DRV. EXE

 C: \VGA0S2>0S2DRV
- Step 5: At the OS/2 command prompt, type the following commands to copy the files to the OS/2 drive: C:\VGAOS2> SISINST C:\VGAOS2 C: <ENTER>
- **Step 6:** When the Setup Program is completed, you will need to perform a shutdown and then restart the system in order for changes to take effect.
- **Step 7:** Please refer to the README.TXT file. When the installation is completed, adjust the VGA resolution in the SYSTEM icon <SCREEN> item of the <SYSTEM SETUP>.

4.3 WATCHDOG TIMER

This section describes how to use the Watchdog Timer, disabled, enabled, and trigger.

The AR-B1579 is equipped with a programmable time-out period watchdog timer. User can use the program to enable the watchdog timer. Once you have enabled the watchdog timer, the program should trigger it every time before it times out. If your program fails to trigger or disable this timer before it times out because of system hang, it will generate a reset signal to reset the system. The time-out period can be programmed to be 3 to 42 seconds.

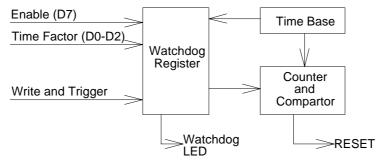


Figure 4-1 Watchdog Block Diagram

4.3.1 Watchdog Timer Setting

The watchdog timer is a circuit that may be used from your program software to detect crashes or hang-ups. Whenever the watchdog timer is enabled, the LED will blink to indicate that the timer is counting. The watchdog timer is automatically disabled after reset.

Once you have enabled the watchdog timer, your program must trigger the watchdog timer every time before it times-out. After you trigger the watchdog timer, it will be set to zero and start to count again. If your program fails to trigger the watchdog timer before time-out, it will generate a reset pulse to reset the system or trigger the IRQ15 signal to tell your program that the watchdog is times out.

The factor of the watchdog timer time-out constant is approximately 6 seconds. The period for the watchdog timer time-out period is between 1 to 7 timer factors.

If you want to reset your system when watchdog times out, the following table listed the relation of timer factors between time-out period.

Time Factor	Time-Out Period (Seconds)
80H	3
81H	6
82H	12
83H	18
84H	24
85H	30
86H	36
87H	42

Table 4-1 Time-Out Setting

NOTE: The relation of timer factors between time-out period of the AR-B1579A is different from the AR-B1579, the table listed as follows:

Enable	I/O Port	Time Factor	Time-Out Period (Seconds)
	443H	01	9.3
	443H	02	18.6
	443H	03	27.9
	443H	04	37.2
Disable	441H	FF	

Table 4-2 Time-Out Setting for AR-B1579

If you want to generate IRQ11 signal to warn your program when watchdog times out, the following table listed the relation of timer factors between time-out period. And if you use the IRQ11 signal to warn your program when watchdog timer out, please enter the BIOS Setup the <Peripheral Setup> menu, the <OnBoard PCI IDE> and <IDE Prefetch> these two items must set to *Primary*.

Time Factor	Time-Out Period (Seconds)
0C0H	3
0C1H	6
0C2H	12
0C3H	18
0C4H	24
0C5H	30
0C6H	36
0C7H	42

Table 4-3 Time-Out Setting

- **NOTE:** 1. If you program the watchdog to generate IRQ11 signal when it times out, you should initial IRQ11 interrupt vector and enable the second interrupt controller (8259 PIC) in order to enable CPU to process this interrupt. An interrupt service routine is required too.
 - 2. Before you initial the interrupt vector of IRQ11 and enable the PIC, please enable the watchdog timer previously, otherwise the watchdog timer will generate an interrupt at the time watchdog timer is enabled.

4.3.2 Watchdog Transferring Select (JP6)

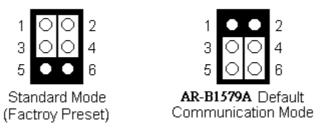


Figure 4-2 JP6: Watchdog Transferring Select

4.3.3 Watchdog Timer Enabled

To enable the watchdog timer, you have to output a byte of timer factor to the watchdog register whose address is 76H or Base Port+4. The following is a BASICA program demonstrates how to enable the watchdog timer and set the time-out period at 24 seconds.

1000	REM Points to command register
1010	WD_REG% = BASE_PORT+4
1020	REM Timer factor = 84H (or 0C4H)
1030	TIMER_FACTOR% = %H84
1040	REM Output factor to watchdog register
1050	OUT WD_REG%, TIMER_FACTOR%
.,e	tc.

4.3.4 Watchdog Timer Trigger

After you enable the watchdog timer, your program must write the same factor as enabling to the watchdog register at least once every time-out period to its previous setting. You can change the time-out period by writing another timer factor to the watchdog register at any time, and you must trigger the watchdog before the new time-out period in next trigger. Below is a BASICA program demonstrates how to trigger the watchdog timer:

2000	REM Points to command register
2010	WD_REG% = BASE_PORT+4
2020	REM Timer factor = 84H (or 0C4H)
2030	TIMER_FACTOR% = &H84
2040	REM Output factor to watchdog register
2050	OUT WD_REG%, TIMER_FACTOR%
.,et	С.

4.3.5 Watchdog Timer Disabled

To disable the watchdog timer, simply write a 00H to the watchdog register.

3000REM Points to command register3010WD_REG% = BASE_PORT%+43020REM Timer factor = 03030TIMER_FACTOR% = 03040REM Output factor to watchdog register3050OUT WD_REG%, TIMER_FACTOR%

., etc.

5. BIOS CONSOLE

This chapter describes the BIOS menu displays and explains how to perform common tasks needed to get up and running. It also presents detailed explanations of the elements found in each of the BIOS menus. The following topics are covered:

- BIOS Setup Overview
- Standard CMOS Setup
- Advanced CMOS Setup
- Advanced Chipset Setup
- Power Management
- PCI/Plug and Play
- Peripheral Setup
- Auto-Detect Hard Disks
- Password Setting
- Load Default Setting
- BIOS Exit
- BIOS Update

NOTE: The options of BIOS are not suitable for the AR-B1579, the settings are only fit for the AR-B1579.

5.1 BIOS SETUP OVERVIEW

The BIOS is a program used to initialize and set up the I/O system of the computer, which includes the PCI bus and connected devices such as the video display, diskette drive, and the keyboard.

The BIOS provides a menu-based interface to the console subsystem. The console subsystem contains special software, called firmware that interacts directly with the hardware components and facilitates interaction between the system hardware and the operating system.

The BIOS default values ensure that the system will function at its normal capability. In the worst situation the user may have corrupted the original settings set by the manufacturer.

After the computer is turned on, the BIOS will perform diagnostics on the system and display the size of the memory that is being tested. Press the [Del] key to enter the BIOS Setup program, and then the main menu will show on the screen.

The BIOS Setup main menu includes some options. Use the [Up/Down] arrow key to highlight the option that you wish to modify, and then press the [Enter] key to select the option and configure the functions.

AMIBIOS HIFLEX SETUP UTILITY - VERSION 1.07 (C) 1996 American Megatrends, Inc. All Rights Reserved

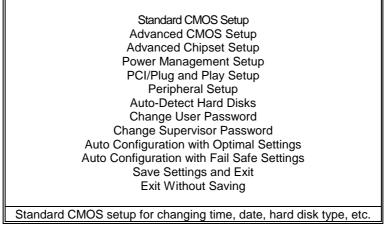


Figure 5-1 BIOS: Setup Main Menu

- **CAUTION:** 1. In the AR-B1579 BIOS the factory-default setting is the <Auto Configuration with Optimal Settings> Acrosser recommends using the BIOS default settings, unless you are very familiar with the setting function, or you can contact the technical support engineer.
 - 2. If the BIOS loses setting, the CMOS will detect the <Auto Configuration with Fail Safe Settings> to boot the operating system. This option will reduce the performance of the system. Acrosser recommends choosing the <Auto Configuration with Optimal Setting> in the main menu. The option is best-case values that should optimize system performance.
 - 3. The BIOS settings are described in detail in this section.

5.2 STANDARD CMOS SETUP

The <Standard CMOS Setup> option allows you to record some basic system hardware configurations and set the system clock and error handling. If the CPU board is already installed in a working system, you will not need to select this option anymore.

AMIBIOS SETUP - STANDARD CMOS SETUP (C) 1998 American Megatrends, Inc. All Rights Reserved			
Date (mm/dd/yyyy): Tue Jun 01,1999 Time (hh/mm/ss): 13:39:30	640KB 63MB		
Floppy Drive A: 1.44MB 3 1/2 Floppy Drive B: Not Installed	LBA Blk PIO 32Bit		
Pri Master : Auto Pri Slave : Auto Sec MASTER :Auto Sec Slave :Auto	m Sec Mode Mode Mode Mode Off Off Auto Off Off Off Auto Off Off Off Auto Off Off Off Auto Off		
Boot Sector Virus Protection Disabled Month: Jan - Dec Day: 01 - 31 Year: 1901 - 2099	ESC:Exit ↑ ↓ :Sel PgUp/PgDn:Modify F2/F3:Color		

Figure 5-2 BIOS: Standard CMOS Setup

Date & Time Setup

Highlight the <Date> field and then press the [Page Up] /[Page Down] or [+]/[-] keys to set the current date. Follow the month, day and year format.

Highlight the <Time> field and then press the [Page Up] /[Page Down] or [+]/[-] keys to set the current date. Follow the hour, minute and second format.

The user can bypass the date and time prompts by creating an AUTOEXEC.BAT file. For information on how to create this file, please refer to the MS-DOS manual.

Floppy Setup

The <Standard CMOS Setup> option records the types of floppy disk drives installed in the system. To enter the configuration value for a particular drive, highlight its corresponding field and then select the drive type using the left-or right-arrow key.

Hard Disk Setup

The BIOS supports various types for user settings, The BIOS supports <Pri Master> and <Pri Slave> so the user can install up to two hard disks. For the master and slave jumpers, please refer to the hard disk's installation descriptions and the hard disk jumper settings.

You can select <AUTO> under the <TYPE> and <MODE> fields. This will enable auto detection of your IDE drives during bootup. This will allow you to change your hard drives (with the power off) and then power on without having to reconfigure your hard drive type. If you use older hard disk drives which do not support this feature, then you must configure the hard disk drive in the standard method as described above by the <USER> option.

Boot Sector Virus Protection

This option protects the boot sector and partition table of your hard disk against accidental modifications. Any attempt to write to them will cause the system to halt and display a warning message. If this occurs, you can either allow the operation to continue or use a bootable virus-free floppy disk to reboot and investigate your system. The default setting is *Disabled*. This setting is recommended because it conflicts with new operating systems. Installation of new operating systems requires that you disable this to prevent write errors.

5.3 ADVANCED CMOS SETUP

The <Advanced CMOS Setup> option consists of configuration entries that allow you to improve your system performance, or let you set up some system features according to your preference. Some entries here are required by the CPU board's design to remain in their default settings.

AMIBIOS SETUP - ADVANCED CMOS SETUP (C) 1998 American Megatrends, Inc. All Rights Reserved			
Quick Boot 1 st Boot Device 2nd Boot Device 3rd Boot Device 4th Boot Device Boot From Card BIOS Try Other Boot Devices Floppy Access Control Hard Disk Access Control S.M.A.R.T. for Hard Disks BootUp Num-Lock Floppy Drive Swap Floppy Drive Swap Floppy Drive Seek PS/2 Mouse Support Typematic Rate System Keyboard Primary Display Password Check Boot To OS/2>64MB Wait For 'F1' If Error Hit 'DEL' Message Display L1 Cache L2 Cache System BIOS Cacheable C000, 16k Shadow C400, 16k Shadow C800, 16k Shadow	Enabled Floppy IDE-0 CDROM Disabled Yes Read-write Enabled On Disabled Enabled Fast Absent VGA/EGA Setup No Disabled Enabled Write Back Write Back Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled	Available Options : Disabled IDE-0 IDE-1 IDE-2 IDE-3 Floppy ARMD-FDD ARMD-HDD CDROM SCSI NETWORK	
CC00, 16k Shadow D000, 16k Shadow D400, 16k Shadow D800, 16k Shadow DC00, 16k Shadow	Disabled Disabled Disabled Disabled Disabled	ESC:Exit ↑ ↓ :Sel PgUp/PgDn:Modify F2/F3:Color	

Figure 5-3 BIOS: Advanced CMOS Setup

1st Boot Device

2nd Boot Device

3rd Boot Device

4th Boot Device

These options determine where the system looks first for an operating system.

Quick Boot

This category speeds up Power On Self Test (POST) after you power on the computer. If it is set to *Enabled*, BIOS will shorten or skip some check items during POST.

BootUp Num-Lock

This item is used to activate the Num-Lock function upon system boot. If the setting is on, after a boot, the Num-Lock light is lit, and user can use the number key.

Floppy Drive Swap

The option reverses the drive letter assignments of your floppy disk drives in the Swap A, B setting, otherwise leave on the setting of *Disabled* (No Swap). This works separately from the BIOS Features floppy disk swap feature. It is functionally the same as physically interchanging the connectors of the floppy disk drives. When <*Enabled*>, the BIOS swapped floppy drive assignments so that Drive A becomes Drive B, and Drive B becomes Drive A under DOS.

Floppy Drive Seek

If the <Floppy Drive Seek> item is setting *Enabled*, the BIOS will seek the floppy <A> drive one time upon bootup.

PS/2 Mouse Support

The setting of *Enabled* allows the system to detect a PS/2 mouse on bootup. If detected, IRQ12 will be used for the PS/2 mouse. IRQ 12 will be reserved for expansion cards if a PS/2 mouse is not detected. *Disabled* will reserve IRQ12 for expansion cards and therefore the PS/2 mouse will not function.

Typematic Rate

This item specifies the speed at which a keyboard keystroke is repeated.

System Keyboard

This function specifies that a keyboard is attached to the computer.

Primary Display

The option is used to set the type of video display card installed in the system.

Password Check

This option enables password checking every time the computer is powered on or every time the BIOS Setup is executed. If *Always* is chosen, a user password prompt appears every time the computer is turned on. If *Setup* is chosen, the password prompt appears if the BIOS executed.

Boot to OS/2, > 64MB

When using the OS/2 operating system with installed DRAM of greater than 64MB, you need to **Enabled** this option otherwise leave this on the setup default of **Disabled**.

Wait for 'F1' If Error

AMIBIOS POST error messages are followed by:

Press <F1> to continue

If this option is set to **Disabled**, the AMIBIOS does not wait for you to press the <F1> key after an error message.

Hit 'DEL' Message Display

Set this option to **Disabled** to prevent the message as follows:

Hit 'DEL' if you want to run setup

It will prevent the message from appearing on the first BIOS screen when the computer boots.

L1 Cache

This option specifies the caching algorithm used for L1 internal cache memory. The settings are:

Setting	Description		
Disabled	Neither L1 internal cache memory on the CPU or L2		
	secondary cache memory is enabled.		
WriteBack	Use the write-back caching algorithm.		
WriteThru	Use the write-through caching algorithm.		

Table 5-1 Internal Cache Setting

L2 Cache

This option specifies the caching algorithm used for L2 secondary (external) cache memory. The settings are:

Setting	Description	
Disabled	Neither L1 internal cache memory on the CPU or L2	
	secondary cache memory is enabled.	
WriteBack	Use the write-back caching algorithm.	
WriteThru	Use the write-through caching algorithm.	

Table 5-2 External Cache Setting

System BIOS Cacheable

When this option is set to *Enabled*, the contents of the F0000h system memory segment can be read from or written to L2 secondary cache memory. The contents of the F0000h memory segment are always copied from the BIOS ROM to system RAM for faster execution.

The settings are *Enabled* or *Disabled*. The <Optimal default settings> is *Enabled*. The <Fail-Safe default setting> is *Disabled*.

Shadow

These options control the location of the contents of the 32KB of ROM beginning at the specified memory location. If no adapter ROM is using the named ROM area, this area is made available to the local bus. The settings are:

SETTING	DESCRIPTION
Disabled	The video ROM is not copied to RAM. The contents of the video ROM cannot be read from or written to cache memory.
Enabled	The contents of C000h - C7FFFh are written to the same address in system memory (RAM) for faster execution.
Cached	The contents of the named ROM area are written to the same address in system memory (RAM) for faster execution, if an adapter ROM will be using the named ROM area. Also, the contents of the RAM area can be read from and written to cache memory.

Table 5-3 Shadow Setting

5.4 ADVANCED CHIPSET SETUP

This option controls the configuration of the board's chipset. Control keys for this screen are the same as for the previous screen.

AMIBIOS SETUP - ADVANCED CHIPSET SETUP (C) 1998 American Megatrends, Inc. All Rights Reserved			
USB Function USB KB/Mouse Legacy Support DRAM Automatic Configuration EDO Dram Access Time FP Dram Access Time Refresh Cycle Time	Enabled Disabled Disabled 60ns None Used 62.4us	Available Options : Disabled Enabled	
RAS Pulse Width When Refresh DRAM Read Leadoff Time ISA Bus Clock Frequency MEMORY HOLE at 15M - 16M VGA Shared Memory Size VGA Frequency	4T 1T 7.159MHZ Disabled 1M 55MHz	ESC:Exit ↑ ↓ :Sel PgUp/PgDn:Modify F2/F3:Color	

Figure 5-4 BIOS: Advanced Chipset Setup

DRAM Automatic Configuration

If selecting a certain setting for one BIOS Setup option determines the settings for one or more other BIOS Setup options, the BIOS automatically assigns the dependent settings and does not permit the end user to modify these settings unless the setting for the parent option is changed. Invalid options are grayed and cannot be selected.

Memory Hole at 15-16 MB

This option specifies the range 15MB to 16MB in memory that cannot be addressed on the ISA bus.

ISA Bus Clock Frequency

This option is used to select the ISA bus clock rate.

VGA Shared Memory Size

This option sets the VGA's occupied memory size.

VGA Frequency

This option sets the display's refresh.

ISA Bus Clock Frequency

This option sets the polling clock speed of ISA Bus (PC/104).

NOTE: 1. PCLK means the CPU inputs clock.

2. Acrosser recommends user setting at the range of 8MHz to 10MHz.

Refresh Cycle Time

This option sets the DRAM refresh cycle time.

5.5 POWER MANAGEMENT

This section is used to configure power management features. This <Power management Setup> option allows you to reduce power consumption. This feature turns off the video display and shuts down the hard disk after a period of inactivity.

AMIBIOS SETUP - Power Management Setup (C) 1998 American Megatrends, Inc. All Rights Reserved			
Power Management /APM Video Power Down Mode Hard Disk Power Down Mode Hard Disk Time Out (Minute) Standby Time Out (Minute) Suspend Time Out (Minute) Slow Clock Ratio IRQ 3 – (COM2, COM4) IRQ 4 – (COM1, COM3) IRQ 5 – (LPT 2) IRQ 7 – (LPT 1) IRQ 9 IRQ 10 IRQ 11 IRQ 12 (PS2 Mouse)	Disabled Disabled Disabled Disabled Disabled 1:4 Monitor Ignore Monitor Ignore Ignore Ignore Ignore Monitor	Available Options : Disabled Enabled ESC:Exit ↑ ↓ :Sel	
IRQ 12 (F32 Mouse) IRQ 14 IRQ 15	Monitor Monitor Monitor	PgUp/PgDn:Modify F2/F3:Color	

Figure 5-5 BIOS: Power Management Setup

Power Management /APM

Enabled this option is to enable the power management and APM (Advanced Power Management) features.

Video Power Down Mode

This option specifies the power management state that the video subsystem enters after the specified period of display inactivity has expired.

Hard Disk Power Down Mode

This option specifies the power management states that the hard disk drive enters after the specified period of display inactivity has expired.

Hard Disk Time Out

This option specifies the length of a period of hard disk inactivity. When this period expired, the hard disk drive enters the power-conserving mode specified on the <Hard Disk Power Down Mode> option.

Standby Time Out

Suspend Time Out

These options specify the length of the period of system inactivity when the computer is already in Standby mode before the computer is placed on Suspend mode. In Suspend mode, nearly all power use is curtailed.

Slow Clock Ratio

This option specifies the speed at which the system clock runs in power saving modes. The settings are expressed as a ratio between the normal clock speed and the power down clock speed.

IRQ

These options enable event monitoring. When the computer is in a power saving mode, activity on the named interrupt request line is monitored by BIOS. When any activity occurs, the computer enters Full On mode.

5.6 PCI/PLUG AND PLAY

This section is used to configure PCI / Plug and Play features. The <PCI & PNP Setup> option configures the PCI bus slots. All PCI bus slots on the system use INTA#, thus all installed PCI cards must be set to this value.

AMIBIOS SETUP - PCI/PLUG AND PLAY SETUP (C) 1998 American Megatrends, Inc. All Rights Reserved					
Plug and Play Aware O/S Clear NVRAM PCI Latency Timer (PCI Clocks) PCI IDE BusMaster DMA Channel 0 DMA Channel 1 DMA Channel 3 DMA Channel 5 DMA Channel 6 DMA Channel 7 IRQ 3 IRQ 4 IRQ 5 IRQ 7 IRQ 9 IRQ 10 IRQ 11 IRQ 12 IRQ 14 IRQ 15 Reserved Memory Size Reserved Memory Address	No No 64 Disabled PnP PnP PnP PnP ISA/EISA ISA/EISA PCI /PnP PCI /PnP PCI /PnP PCI /PnP PCI /PnP PCI /PnP PCI /PnP PCI /PnP Disabled C8000	Available Options : Yes No ESC:Exit ↑↓:Sel PgUp/PgDn:Modify F2/F3:Color			

Figure 5-6 BIOS: PCI / Plug and Play Setup

Plug and Play Aware O/S

Set this option to **Yes** if the operating system installed in the computer is Plug and Play-aware. The BIOS only detects and enables PnP ISA adapter cards that are required for system boot. The Windows 95 operating system detects and enables all other PnP-aware adapter cards. Windows 95 is PnP-aware. Set this option <No> if the operating system (such as DOS, OS/2, Windows 3.x) does not use PnP. You must set this option correctly or PnP-aware adapter cards installed in your computer will not be configured properly.

Clear NVRAM

This sets the operating mode of the boot block area of the BIOS FLASH ROM to allow programming in the **Yes** setting.

PCI Latency Timer (PCI Clocks)

This option sets latency of all PCI devices on the PCI bus. The settings are in units equal to PCI clocks.

PCI IDE BusMaster

Enabled this option is to specify that the IDE controller on the PCI local bus has bus mastering capability.

DMA & IRQ

These options specify the bus that the named IRQs/DMAs lines are used on. These options allow you to specify IRQs/DMAs for use by legacy ISA adapter cards. These options determine if the BIOS should remove an IRQ/DMA from the pool of available IRQs/DMAs passed to BIOS configurable devices. If more IRQs/DMAs must be removed from the pool, the end user can use these PCI/PnP Setup options to remove the IRQ/DMA by assigning the option to the ISA/EISA setting. Onboard I/O is configurable by BIOS.

Reserved memory Size

This option specifies the size of the memory area reserved for legacy ISA adapter cards.

Reserved memory Address

This option specifies the beginning address (in hex) of the reserved memory area. The specified ROM memory area is reserved for use by legacy ISA adapter cards.

5.7 PERIPHERAL SETUP

This section is used to configure peripheral features.

AMIBIOS SETUP - PERIPHERAL SETUP (C) 1998 American Megatrends, Inc. All Rights Reserved				
OnBoard FDC OnBoard Serial Port1 OnBoard Serial Port2 OnBoard Parallel Port Parallel Port Mode Parallel Port IRQ Parallel Port DMA Channel	Enabled 3F8h/COM1 2F8h/COM2 378h ECP N/A 3	Available Options : Auto Disabled Enabled		
OnBoard PCI IDE Primary Master Prefetch Primary Slave Prefetch Secondary Master Prefetch Secondary Slave Prefetch	Both Enabled Enabled Enabled Enabled	ESC:Exit ↑ ↓ :Sel PgUp/PgDn:Modify F2/F3:Color		

Figure 5-7 BIOS: Peripheral Setup

OnBoard FDC

This option enables the floppy drive controller on the AR-B1579.

OnBoard Serial Port

This option enables the serial port on the AR-B1579.

OnBoard Parallel Port

This option enables the parallel port on the AR-B1579.

Parallel Port Mode

This option specifies the parallel port mode. ECP and EPP are both bidirectional data transfer schemes that adhere to the IEEE 284 specifications.

Parallel Port DMA Channel

This option is only available if the setting for the parallel Port Mode option is ECP.

OnBoard PCI MASTER/SLAVE Prefetch

This option specifies the onboard IDE controller channels that will be used.

5.8 AUTO-DETECT HARD DISKS

This option detects the parameters of an IDE hard disk drive, and automatically enters them into the Standard CMOS Setup screen.

5.9 PASSWORD SETTING

This BIOS Setup has an optional password feature. The system can be configured so that all users must enter a password every time the system boots or when BIOS Setup is executed. User can set either a Supervisor password or a User password.

Select the appropriate password icon (Supervisor or User) from the Security section of the BIOS Setup main menu. Enter the password and press [Enter]. The screen does not display the characters entered. After the new password is entered, retype the new password as prompted and press [Enter].

If the password confirmation is incorrect, an error message appears. If the new password is entered without error, press [Esc] to return to the BIOS Main Menu. The password is stored in CMOS RAM after BIOS completes. The next time the system boots, you are prompted for the password function is present and is enabled.

Enter new supervisor password:

5.10 LOAD DEFAULT SETTING

This section permits users to select a group of settings for all BIOS Setup options. Not only can you use these items to quickly set system configuration parameters, you can choose a group of settings that have a better chance of working when the system is having configuration related problems.

5.10.1 Auto Configuration with Optimal Setting

The user can load the optimal default settings for the BIOS. The Optimal default settings are best-case values that should optimize system performance. If CMOS RAM is corrupted, the optimal settings are loaded automatically.

```
Load high performance setting (Y/N) ?
```

5.10.2 Auto Configuration with Fail Safe Setting

The user can load the Fail-Safe BIOS Setup option settings by selecting the Fail-Safe item from the Default section of the BIOS Setup main menu.

The Fail-Safe settings provide far from optimal system performance, but are the most stable settings. Use this option as a diagnostic aid if the system is behaving erratically.

Load failsafe settings (Y/N) ?

5.11 BIOS EXIT

This section is used to exit the BIOS main menu. After making your changes, you can either save them or exit the BIOS menu and without saving the new values.

5.11.1 Save Settings and Exit

This item is in the <Standard CMOS Setup>, <Advanced CMOS Setup>, <Advanced Chipset Setup> and the new password (if it has been changed) will be stored in the CMOS. The CMOS checksum is calculated and written into the CMOS.

As you select this function, the following message will appear at the center of the screen to assist you to save data to CMOS and Exit the Setup.

```
Save current settings and exit (Y/N) ?
```

5.11.2 Exit Without Saving

When you select this option, the following message will appear at the center of the screen to help to abandon all the modified data and Exit Setup.

Quit without saving (Y/N) ?

5.12 BIOS UPDATE

The BIOS program instructions are contained within computer chips called FLASH ROMs that are located on your system board. The chips can be electronically reprogrammed, allowing you to upgrade your BIOS firmware without removing and installing chips.

The AR-B1579 provides FLASH BIOS update function for you to easily upgrade newer BIOS version. Please follow the operating steps for updating new BIOS:

- **Step 1:** Turn on your system and don't detect the CONFIG.SYS and AUTOEXEC.BAT files. Keep your system in the real mode.
- Step 2: Insert the FLASH BIOS diskette into the floppy disk drive.
- Step 3: In the MS-DOS mode, you can type the AMIFLASH program.

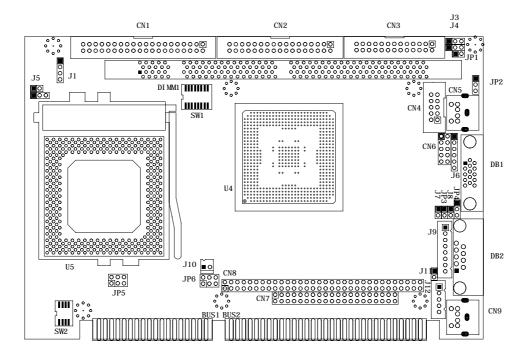
A:\>AMIFLASH

Step 4: The screen will show the message as follow:

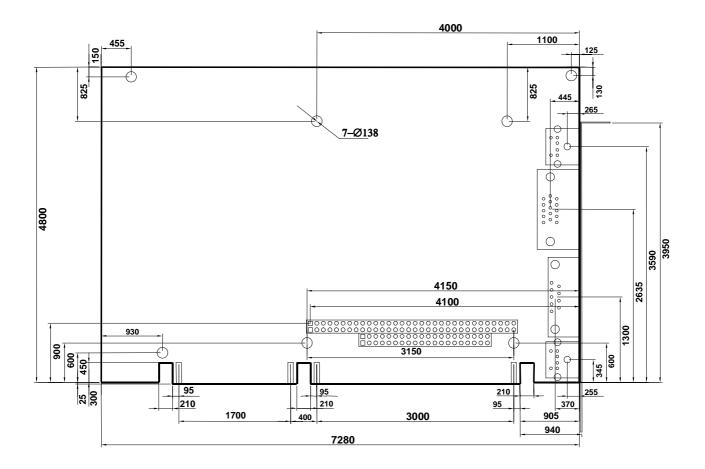
Enter the BIOS File name from which Flash EPROM will be programmed. The File name must and with a <ENTER> or press <ESC> to exit.

Step 5: And then please enter the file name to the box of <Enter File Name>. And the box of <Message> will show the notice as follow. In the bottom of this window always show the gray statement.

Flash EPROM Programming is going to start. System will not be usable until Programming of Flash EPROM is successfully complete. In case of any error, existing Flash EPROM must be replaced by new program Flash EPROM.


- **Step 6:** As the gray statement, press the <Y> key to updating the new BIOS. And then the <Message> box will show the <Programming Flash EPROM>, and the gray statement shows <Please Wait>.
- Step 7: The BIOS update is successful, the message will show <Flash Update Completed Pass>.
- **NOTE:** 1. After turn on the computer and the system didn't detect the boot procedure, please press the [F5] key immediately. The system will pass the CONFIG.SYS and AUTOEXEC.BAT files. *The importance is that the system has to load the HIMEM.SYS on the memory in the CONFIG.SYS file.*
 - The BIOS Flash disk is not the standard accessory. Now the onboard BIOS is the newest BIOS, if user needs adding some functions in the future please contact technical supporting engineers, they will provide the newest BIOS for updating.
 - 3. The file of AMIFLASH.EXE had to Version 6.34.
 - 4. The options of BIOS are not suitable for the AR-B1579A.

6. SPECIFICATIONS


0.511	
CPU:	Supports Pentium 75 to 300 Mhz CPU
Chipset:	SiS 5598
Bus Interface:	PICMG PCI and non-stack through PC/104 bus
RAM Memory:	Supports FPM/EDO RAM, 128 MB maximum (Two 72-pin SIMMs w/o DRAM)
Cache Size:	Synchronous pipe line burst SRAM 512KB
VGA/LCD Display:	4MB VRAM (PCI bus, 1280x1024 true colors)
HDC:	Supports two PCI IDE -one 40-pin 2.54mm connector, and 44-pin 2.0mm connector
FDC:	Supports two 5.25" or 3.5" floppy disk drives
Parallel Port:	1 bi-directional centronics type parallel port
	Supports SPP/EPP/ECP mode
Serial Port:	1 RS-232C and 1 RS-232C/RS-485
Keyboard:	PC/AT compatible keyboard and PS/2 mouse interface
FLASH Disk:	Supports 1 socket for up to 72MB DiskOnChip
Watchdog:	Programmable watchdog timer
Speaker:	On-board Buzzer and external speaker
Real Time Clock:	BQ3287MT or compatible chips with 128 bytes data RAM
BIOS:	AMI Flash BIOS (256KB, including VGA BIOS)
BUS Drive Cap.:	15 TTL level loads maximum
CE Design-In:	Add EMI components to COM ports, parallel port, keyboard, and PS/2 mouse
Indicator:	Power LED and watchdog LED
Power Req.:	+5V and +12V, 3.5A maximum (base on Pentium-75)
PC Board:	8 layers, EMI considered
Dimensions:	185 mmX122mm (7.29"X4.80")

7. PLACEMENT & DIMENSIONS

7.1 PLACEMENT

7.2 DIMENSIONS

Unit: mil (1 inch = 25.4 mm = 1000 mil)

8. PROGRAMMING RS-485 & INDEX

8.1 PROGRAMMING RS-485

The majority communicative operation of the RS-485 is in the same of the RS-232. When the RS-485 proceeds the transmission which needs control the TXC signal, and the installing steps are as follows:

Step 1:	Enable TXC
Step 2:	Send out data
Step 3:	Waiting for data empty
Step 4:	Disable TXC

NOTE: Please refer to the section of the "Serial Port" in the chapter "System Control" for the detail description of the COM port's register.

(1) Initialize COM port

Step 1: Initialize COM port in the receiver interrupt mode, and /or transmitter interrupt mode. (All of the communication protocol buses of the RS-485 are in the same.)

Step 2: Disable TXC (transmitter control), the bit 0 of the address of offset+4 just sets "0".

NOTE: Communicates the AR-B1579 CPU card's DTR signal with the RS-485's TXC signal.

(2) Send out one character (Transmit)

- Step 1: Enable TXC signal, and the bit 0 of the address of offset+4 just sets "1".
- Step 2: Send out the data. (Write this character to the offset+0 of the current COM port address)
- Step 3: Wait for the buffer's data empty. Check transmitter holding register (THRE, bit 5 of the address of offset+5), and transmitter shift register (TSRE, bit 6 of the address of offset+5) are all sets must be "0".
- Step 4: Disabled TXC signal, and the bit 0 of the address of offset+4 sets "0"

(3) Send out one block data (Transmit – the data more than two characters)

- Step 1: Enable TXC signal, and the bit 0 of the address of offset+4 just sets "1".
- Step 2: Send out the data. (Write all data to the offset+0 of the current COM port address)
- **Step 3:** Wait for the buffer's data empty. Check transmitter holding register (THRE, bit 5 of the address of offset+5), and transmitter shift register (TSRE, bit 6 of the address of offset+5) are all sets must be "0".
- Step 4: Disabled TXC signal, and the bit 0 of the address of offset+4 sets "0"

(4) Receive data

The RS-485's operation of receiving data is in the same of the RS-232's.

(5) Basic Language Example

a.) Initial 86C450 UART

- 10 OPEN "COM1:9600,m,8,1"AS #1 LEN=1
- 20 REM Reset DTR
- 30 OUT &H3FC, (INP(%H3FC) AND &HFA)
- 40 RETURN

b.) Send out one character to COM1

- 10 REM Enable transmitter by setting DTR ON
- 20 OUT &H3FC, (INP(&H3FC) OR &H01)
- 30 REM Send out one character
- 40 PRINT #1, OUTCHR\$
- 50 REM Check transmitter holding register and shift register
- 60 IF ((INP(&H3FD) AND &H60) >0) THEN 60
- 70 REM Disable transmitter by resetting DTR
- 80 OUT &H3FC, (INP(&H3FC) AND &HEF)
- 90 RETURN

c.) Receive one character from COM1

- 10 REM Check COM1: receiver buffer
- 20 IF LOF(1)<256 THEN 70
- 30 REM Receiver buffer is empty
- 40 INPSTR\$=""
- 50 RETURN
- 60 REM Read one character from COM1: buffer
- 70 INPSTR\$=INPUT\$(1,#1)
- 80 RETURN

8.2 INDEX

Name	Function	Page
CN1	40-pin hard disk (IDE) connector	3-3
CN2	Floppy disk connector	3-7
CN4	Serial port B connector	3-9
CN6	USB Connector (Reserved)	
CN3	Parallel port connector	3-7
CN5	PS/2 mouse connector	3-10
CN8	64-pin PC/104 connector bus A & B	3-4
CN7	40-pin PC/104 connector bus C & D	3-4
CN9	6-pin mini DIN keyboard connector	3-6
DB1	CRT connector	3-2
DB2	Serial port A connector	3-9
DIMM	Socket for DIMM	
J1	External speaker header	3-10
J5	HDD LED header for IDE0	3-11
J4	RS-485 header	3-9
J3	External power LED header	3-11
J6	PS/2 mouse connector	3-10
J8	Reset header	3-10
J7	Keyboard lock header	3-6
J9	8-pin power connector	3-11
J10	CPU cooling fan power connector	3-13
J11	Watchdog LED header	3-11
J12	AUX. Keyboard connector	3-6
D1	Power LED presents red light	
D2	Watchdog LED presents yellow light	
SW1	COM-B RS-232C/RS-485 select	3-8
	System base clock & CPU clock multiplier	3-12
	D.O.C. memory address select	3-15
SW2	CPU logic core voltage select	3-13
JP2	COM-B RS-485 adapter select	3-8
JP1	RS-485 terminator select	3-9
JP3	PS/2 mouse IRQ12 setting	3-10
JP4	COM-A RS-485 adapter select	3-8
JP6	Watchdog transferring select	3-2
JP5	P54C/P55C CPU type select	3-13

Caution on activating USB devices Model No : AR-B1579 BIOS version : V1.1

The legacy functions of the USB Keyboard and Mouse devices are not supported at the moment. However, functions of other USB devices in Windows 98 are still properly supported by following the operating procedures below:

1) When you are installing Windows 98, please disable the USB function in

<Chipset Setup> menu of the BIOS.

2) Install SiS5598 multimedia drivers to your Windows 98.

3) Enable USB function in <Chipset Setup> item of BIOS.

4) Check whether your USB device is working properly.

If you found any further problem while implementing the USB functions of AR-B1579, please contact our Customer Support for details.