

Latch-Up Performance Exceeds 250 mA Per

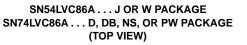
Typical V_{OHV} (Output V_{OH} Undershoot)

- 2000-V Human-Body Model (A114-A)

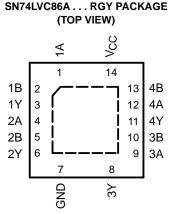
- 1000-V Charged-Device Model (C101)

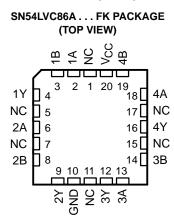
>2 V at V_{CC} = 3.3 V, T_A = 25°C

ESD Protection Exceeds JESD 22


- 200-V Machine Model (A115-A)

JESD 17


SCAS288P-JANUARY 1993-REVISED APRIL 2005


FEATURES

- Operate From 1.65 V to 3.6 V
- Specified From –40°C to 85°C, –40°C to 125°C, and –55°C to 125°C
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.6 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C

	1A [1B [1Y [2A [2B [2Y [GND [1 2 3 4 5 6 7	0	14 13 12 11 10 9 8		V _{CC} 4B 4A 4Y 3B 3A 3Y
--	---	---------------------------------	---	--------------------------------------	--	---

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The SN54LVC86A quadruple 2-input exclusive-OR gate is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC86A quadruple 2-input exclusive-OR gate is designed for 1.65-V to 3.6-V V_{CC} operation.

The 'LVC86A devices perform the Boolean function $Y = A \oplus B$ or $Y = \overline{AB} + A\overline{B}$ in positive logic.

ORDERING INFORMATION

T _A	PA	PACKAGE ⁽¹⁾ ORDERABLE PART NUMBER		TOP-SIDE MARKING
-40°C to 85°C	QFN – RGY	- RGY Reel of 1000 SN74LVC86ARGYR		LC86A
		Tube of 50	SN74LVC86AD	
	SOIC – D	Reel of 2500	SN74LVC86ADR	LVC86A
		Reel of 250	SN74LVC86ADT	
	SOP – NS	Reel of 2000	SN74LVC86ANSR	LVC86A
–40°C to 125°C	SSOP – DB	Reel of 2000	SN74LVC86ADBR	LC86A
		Tube of 90	SN74LVC86APW	
	TSSOP – PW	Reel of 2000	SN74LVC86APWR	LC86A
		Reel of 250	SN74LVC86APWT	
	CDIP – J	Tube of 25	SNJ54LVC86AJ	SNJ54LVC86AJ
–55°C to 125°C	CFP – W	Tube of 150	SNJ54LVC86AW	SNJ54LVC86AW
	LCCC – FK	Tube of 55	SNJ54LVC86AFK	SNJ54LVC86AFK

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

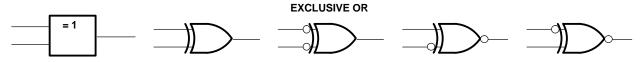
Copyright © 1993–2005, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SN54LVC86A, SN74LVC86A QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

SCAS288P-JANUARY 1993-REVISED APRIL 2005

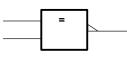
DESCRIPTION/ORDERING INFORMATION (CONTINUED)

A common application is as a true/complement element. If one of the inputs is low, the other input is reproduced in true form at the output. If one of the inputs is high, the signal on the other input is reproduced inverted at the output.

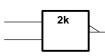

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

FUNCTION TABLE (EACH GATE)

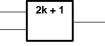
INP	UTS	OUTPUT				
Α	В	Y				
L	L	L				
L	Н	Н				
н	L	Н				
Н	Н	L				


EXCLUSIVE-OR LOGIC

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.


These five equivalent exclusive-OR symbols are valid for an SN74LVC86A gate in positive logic; negation may be shown at any two ports.

LOGIC-IDENTITY ELEMENT


The output is active (low) if all inputs stand at the same logic level (i.e., A = B).

EVEN-PARITY ELEMENT

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

SCAS288P-JANUARY 1993-REVISED APRIL 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V ₀ < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND			±100	mA
		D package ⁽⁴⁾		86	
		DB package ⁽⁴⁾		96	
θ_{JA}	Package thermal impedance	NS package ⁽⁴⁾		76	°C/W
		PW package ⁽⁴⁾		113	
		RGY package ⁽⁴⁾		47	
T _{stg}	Storage temperature range	· · · · · ·	-65	150	°C
P _{tot}	Power dissipation	$T_A = -40^{\circ}C$ to $125^{\circ}C^{(5)(6)}$		500	mW

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

(5) For the D package: above 70°C, the value of P_{tot} derates linearly with 8 mW/K.

(6) For the DB, DGV, NS, and PW packages: above 60°C, the value of P_{tot} derates linearly with 5.5 mW/K.

Recommended Operating Conditions⁽¹⁾

			SN54LV	C86A		
			–55 TO ²	125°C	UNIT	
			MIN	MAX		
V	Supply veltage	Operating	2	3.6	V	
V _{CC}	Supply voltage	Data retention only	1.5		v	
V _{IH}	High-level input voltage	V _{CC} = 2.7 V to 3.6 V	2		V	
V _{IL}	Low-level input voltage	V _{CC} = 2.7 V to 3.6 V		0.8	V	
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 2.7 V		-12	~ ^	
IOH	High-level output current	$V_{CC} = 3 V$		-24	4 mA	
	Level and a david an investig	V _{CC} = 2.7 V		12		
I _{OL}	Low-level output current	V _{CC} = 3 V		24	mA	
$\Delta t / \Delta v$	Input transition rise or fall rate	·		9	ns/V	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54LVC86A, SN74LVC86A QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

SCAS288P-JANUARY 1993-REVISED APRIL 2005

Recommended Operating Conditions⁽¹⁾

					SN74L	VC86A				
			T _A = 25	T _A = 25°C		D 85°C	–40 TO	125°C	UNIT	
			MIN	MAX	MIN	МАХ	MIN	MAX		
V	Cupply voltage	Operating	1.65	3.6	1.65	3.6	1.65	3.6	V	
V _{CC}	Supply voltage	Data retention only	1.5		1.5		1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 imes V_{CC}$		$0.65 \times V_{\text{CC}}$		$0.65 \times V_{CC}$			
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		1.7		1.7		V	
	Voltago	V_{CC} = 2.7 V to 3.6 V	2		2		2			
		V _{CC} = 1.65 V to 1.95 V	0	$.35 \times V_{CC}$		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$		
V _{IL} Low-leve voltage	Low-level input	V_{CC} = 2.3 V to 2.7 V		0.7		0.7		0.7	V	
	vollago	V_{CC} = 2.7 V to 3.6 V		0.8		0.8		0.8		
VI	Input voltage		0	5.5	0	5.5	0	5.5	V	
Vo	Output voltage		0	V _{CC}	0	V _{CC}	0	V _{CC}	V	
		V _{CC} = 1.65 V		-4		-4		-4		
	High-level	V _{CC} = 2.3 V		-8		-8		-8	mA	
I _{OH}	output current	V _{CC} = 2.7 V		-12		-12		-12	ШA	
		$V_{CC} = 3 V$		-24		-24		-24		
		V _{CC} = 1.65 V		4		4		4		
	Low-level output	V _{CC} = 2.3 V	8			8		8	٣٨	
I _{OL}	current	V _{CC} = 2.7 V		12		12		12	mA	
		$V_{CC} = 3 V$		24		24		24	L	
$\Delta t / \Delta v$	Input transition ris	se or fall rate		9		9		9	ns/V	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

			SN54L			
PARAMETER	TEST CONDITIONS	V _{cc}	–55 TC	UNIT		
				MIN	TYP MAX	
	I _{OH} = -100 μA		2.7 V to 3.6 V	V _{CC} – 0.2		
N/	40 40	2.7 V	2.2			
V _{OH}	$I_{OH} = -12 \text{ mA}$	3 V	2.4		V	
	$I_{OH} = -24 \text{ mA}$		3 V	2.2		
	I _{OL} = 100 μA	2.7 V to 3.6 V		0.2		
V _{OL}	I _{OL} = 12 mA		2.7 V		0.4	V
	I _{OL} = 24 mA		3 V		0.55	
l _l	$V_{I} = 5.5 \text{ V or GND}$		3.6 V		±5	μA
I _{CC}	$V_{I} = V_{CC} \text{ or } GND$	$I_{O} = 0$	3.6 V		10	μA
Δl _{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND		2.7 V to 3.6 V		500	μΑ
C _i	$V_{I} = V_{CC} \text{ or } GND$		3.3 V		5 ⁽¹⁾	pF

(1) $T_A = 25^{\circ}C$

SCAS288P-JANUARY 1993-REVISED APRIL 2005

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

						;	SN74LVC86	Α			
PARAMETER	TEST CONDITIONS		V _{cc}	T _A = 25°C			–40 TO 85°C		–40 TO 125°C		UNIT
				MIN	TYP M	MAX	MIN	MAX	MIN	MAX	1
	I _{OH} = −100 μA		1.65 V to 3.6 V	V _{CC} – 0.2			$V_{CC} - 0.2$		$V_{CC} - 0.3$		
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.29			1.2		1.05		1
V	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			1.7		1.55		V	
V _{OH}	L _ 12 mA		2.7 V	2.2			2.2		2.05		v
	I _{OH} = -12 mA	3 V	2.4			2.4		2.25			
	I _{OH} = -24 mA	3 V	2.3			2.2		2		1	
	I _{OL} = 100 μA	1.65 V to 3.6 V			0.1		0.2		0.3		
	$I_{OL} = 4 \text{ mA}$	1.65 V		(0.24		0.45		0.6	1	
V _{OL}	I _{OL} = 8 mA		2.3 V			0.3		0.7		0.75	V
	I _{OL} = 12 mA		2.7 V			0.4		0.4		0.6	1
	I _{OL} = 24 mA		3 V		(0.55		0.55		0.8	1
lı lı	$V_{I} = 5.5 V \text{ or GND}$		3.6 V			±1		±5		±20	μΑ
I _{CC}	$V_{I} = V_{CC}$ or GND	$I_0 = 0$	3.6 V			1		10		40	μΑ
ΔI _{CC}	One input at $V_{CC} - 0.6$ V Other inputs at V_{CC} or G		2.7 V to 3.6 V			500		500		5000	μA
Ci	$V_I = V_{CC}$ or GND		3.3 V		5						pF

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

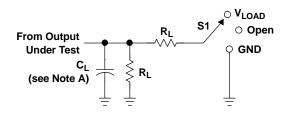
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	SN54LV 55 TO		UNIT
				MIN	MAX	
	•	Y	2.7 V		5.6	20
^L pd	A	Ť	$3.3~\textrm{V}\pm0.3~\textrm{V}$	1	4.6	ns

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	FROM					SN	74LVC86	6A			
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T,	_A = 25°C		-40 TO	85°C	-40 TO	125°C	UNIT
	((001101)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
			$1.8 \text{ V} \pm 0.15 \text{ V}$	1	4.1	9.4	1	9.9	1	11.4	
	•	v	$2.5~V\pm0.2~V$	1	2.9	7.1	1	7.6	1	9.7	~~
t _{pd}	A	Y	2.7 V	1	2.8	5.4	1	5.6	1	7.1	ns
			$3.3~\textrm{V}\pm0.3~\textrm{V}$	1	2.5	4.4	1	4.6	1	5.8	
t _{sk(o)}			$3.3~V\pm0.3~V$					1		1.5	ns

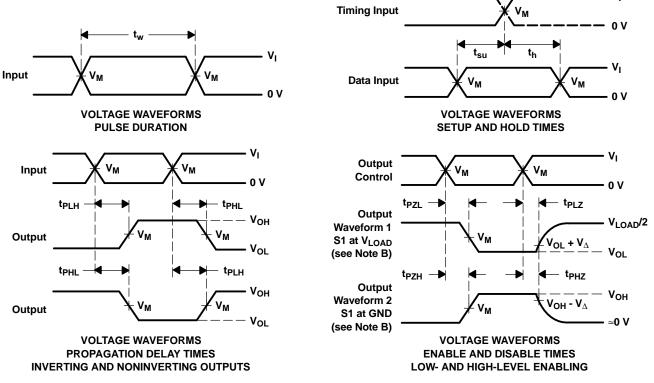
Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	v _{cc}	ТҮР	UNIT
			1.8 V	6.5	
C _{pd}	Power dissipation capacitance per gate	f = 10 MHz	2.5 V	7.5	pF
			3.3 V	8.5	

٧ı

SCAS288P-JANUARY 1993-REVISED APRIL 2005


PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

	INPUTS				•	_	
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	V_{Δ}
1.8 V \pm 0.15 V	V _{CC}	≤ 2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9761901Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9761901QCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
5962-9761901QDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SN74LVC86AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADBLE	OBSOLETE	SSOP	DB	14		TBD	Call TI	Call TI
SN74LVC86ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADT	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ADTE4	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ANSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86APW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86APWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86APWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86APWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
SN74LVC86APWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86APWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86APWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86APWT	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86APWTE4	ACTIVE	TSSOP	PW	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC86ARGYR	ACTIVE	QFN	RGY	14	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
SN74LVC86ARGYRG4	ACTIVE	QFN	RGY	14	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR

TEXAS INSTRUMENTS www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SNJ54LVC86AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LVC86AJ	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54LVC86AW	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

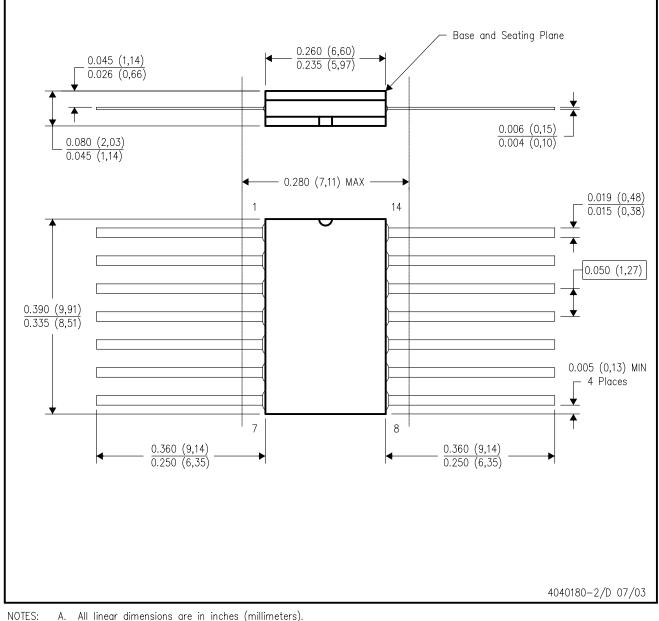
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



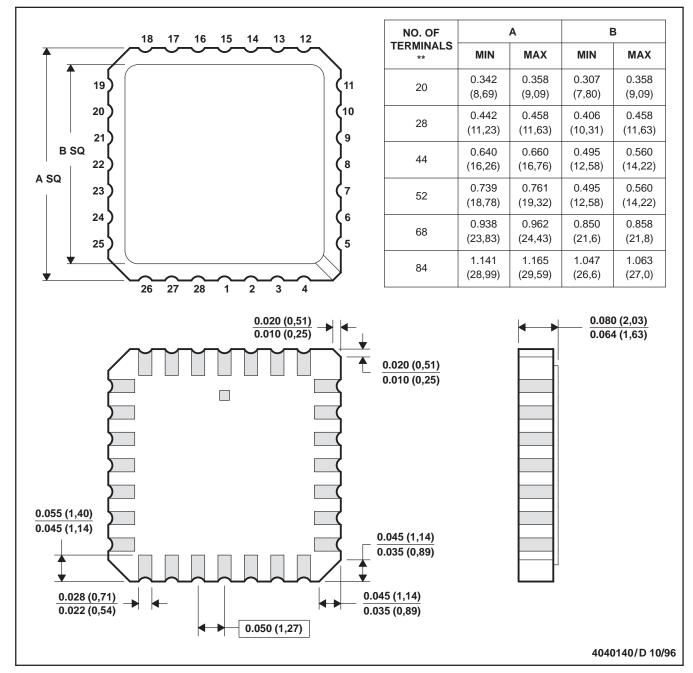
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

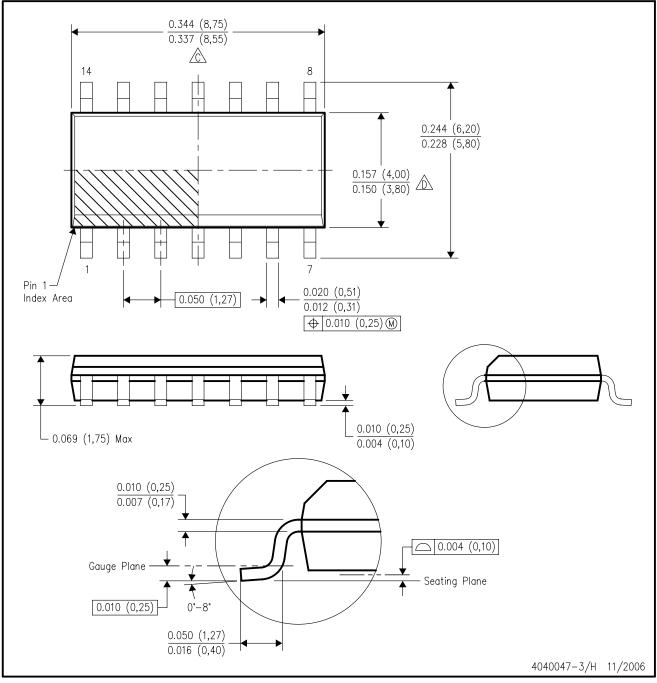


MLCC006B - OCTOBER 1996

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

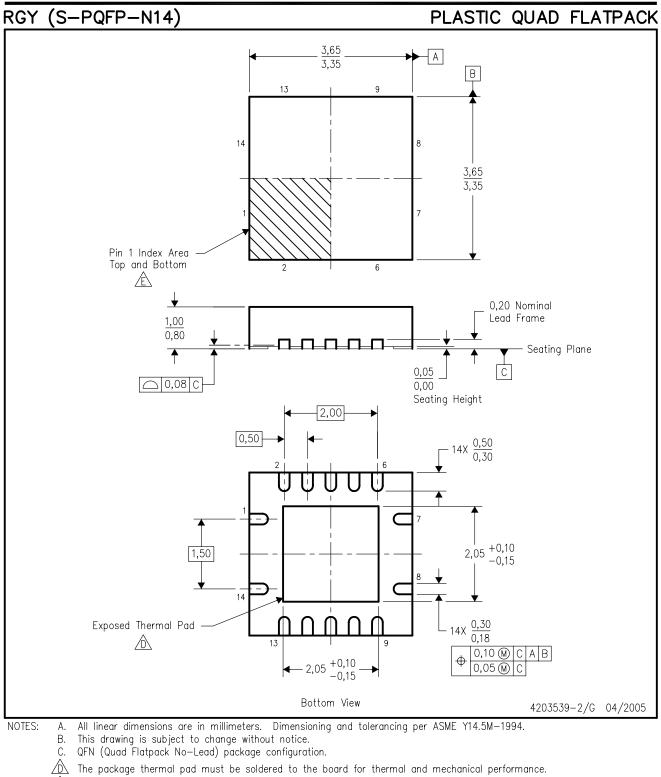
28 TERMINAL SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.

Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AB.

È Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.

F. Package complies to JEDEC MO-241 variation BA.

PLASTIC SMALL-OUTLINE PACKAGE

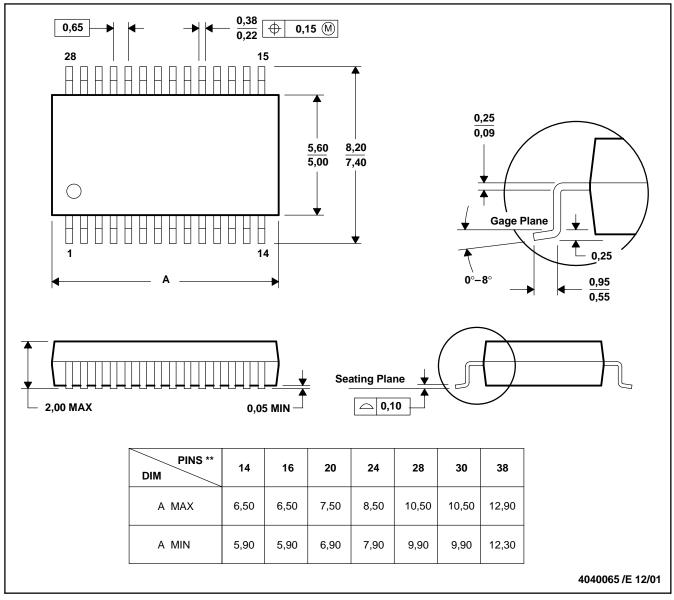
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

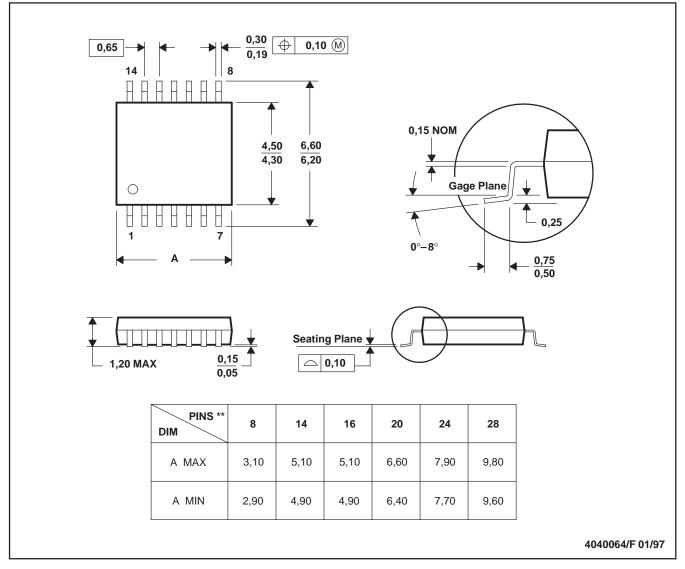
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150



MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated